
 1 



 2 



 3 

When an error occurs, the first step is to categorize it, as different types of errors call for different 
corrective measures. In some of the cases described here, categorization is simple. In some cases, 
however, it may not be immediately clear which of the active components is responsible for the 
undesirable system behavior. It may not even be clear whether the problem has to do with the database, 
and thus whether the diagnosis options described in this chapter will be helpful.  

Problems arising from the installation of the software are easy to identify as such. 

In an SAP environment, connection problems generally manifest themselves in that the database is, in 
principle, ready for operation, but the client processes cannot get a connection. 

If the database, without any conscious action having been taken, is no longer ready for operation, it may 
have crashed. However, it is also possible that the database has consciously performed an emergency 
shutdown due to an existing error situation. 

In the SAP environment, a hang situation is indicated by the presence of an hourglass. Determining the 
area in which a problem exists (lock collision, "blockage" of the system resources, etc.) is not necessarily 
insignificant.  

System errors are serious errors and in the SAP system are often logged as error -602. The unique error 
number can be found in the KnlMsg (knldiag) file. 

As a rule, transactions terminate with a short dump if an SQL error occurs.   

Backup or restore problems are recognizable as such; however, problems in this area frequently are due 
not to the database itself, but rather have an external cause operating system, external backup tool).   

 



 4 

As of version 7.6 the software installation for MaxDB is done with the installation manager (sdbsetup). It 

is available for use after unpacking the software package provided on the Service Marketplace. 

Both initial installations and software updates can be done by choosing “Start Installation/Upgrade”.  

Deinstallations of MaxDB software can be done via “Remove MaxDB components”. Do not delete the 

MaxDB software with operating system resources under any circumstances! 

“Show MaxDB components” provides information about installation directories, versions of the installed 

software elements, databases and additionally guides you to the installation log files. 

Installation logs are stored in the directory <globaldatapath>/wrk ; these can be useful, even at a later 

point in time. The name contains the type of installation as well as a time stamp, which makes it possible 

to determine the corresponding package. 

The <globaldatapath> can be determined by using the following dbmcli command: 

 dbmcli –d <SID> -u <dbm-user>,<password> dbm_getpath globaldatapath 

 

More extensive migration work may be necessary if you are making a big release-jump; the procedure is 

described in the corresponding notes. 

In the example shown above at the beginning of the installation an error occurred. The installation 

manager guides the user to the log file where he finds a more exact and often self-explaining error 

message. The installation failed as another sdbupd was started at the same time. 



 5 

Installation of the MaxDB software in versions 7.5 and smaller is done with the tools sdbinst and 

sdbupd. In the higher versions they are also part of the delivered software and can be used if the 

installation is not done interactively. For an initial installation, sbdinst is used; overwriting an older 

version with a current one is done with sdbupd. 

You get the call options by entering the option -help. 

If you encounter problems during installation, a corresponding message is issued. The message should 

inform you as to what error has occurred and how to fix it.  

Installation logs are stored in the directory <globaldatapath>/wrk. 

(Up to version 7.7 the installation logs can be found in the directory <indepdatapath>/wrk as the           

so-called isolated installation had not been introduced in those versions.) 

sdbinst/sdbupd enable you to install individual components from the overall package. You use the          

–package option to specify the component(s).  

You use sdbuninst or SDBSETUP to deinstall the software.  



 6 

To quickly find errors in the installation logs, look for the key word STDERR.  

A common cause of errors in Windows systems is that DLLs cannot be overwritten or - more generally - 

that a component to be overwritten is still running (for example the x_server). 

 

In the first two cases you get the message that the database software has not been completely stopped, 

so a re-installation would fail. To identify such problems ahead of time and avoid having the installation 

fail half-way through, the actual installation is preceded by a test run. 

As of version 7.6.01 the option –force_extract cares for the substitution of programs and libraries being 

in use by copying the existing files.  

In the third example, the attempt was made to install an older version over a newer one. This is not 

permitted since downward compatibility cannot be ensured, for instance when loading the system tables.   

 

 



 7 

sdbverify is a tool that checks all installations on a computer for completeness. During the check, any 

inconsistencies due to impermissible software combinations are detected. 

Using the registry entries, sdbverify checks whether the status in the file system still corresponds to the 

contents of the installation package. 

In the example above, it is noted that the access rights (under Unix) were subsequently changed. 

The result is a summary of the installations that have been checked. 

As of version 7.8.02 an option repair_permissions has been introduced. Inconsistencies concerning user 

rights can automatically be repaired. 

 

Start sdbverify with user root under Linux/UNIX. 

 

To get an overview of the registered installations, you can also use the tool sdbregview. If you call it 

with the option -I, it outputs a short list; without the option it outputs comprehensive information about 

every installation. 

 



 8 

The tool xinstinfo provides a quick overview of the installation paths used on a system. It displays the 

"Independent Data Path" and the "Independent Program Path", or in other words, the paths that are valid 

for all the databases installed on the computer. The programs found there are always operated in the 

highest installed version (for example the x_server). 

If xinstinfo is called with a database name, you also get database-specific information.  

 

Using dbmcli with the entry inst_enum, you get a list of the versions installed on the computer 

(dependent paths). The command db_enum lists the databases in their different variants (fast, quick, 

slow, test) as well as their current operational states. 

 



 9 



 10 

Short Dump 
ABAP short dumps are generated by the WebAS or R/3 system when unexpected return codes occur in the SQL 
environment. 

dev-Trace 
The Developer Traces are logs of the disp+work processes of the SAP system. 

SQL Trace 
SQL commands and their runtimes are logged. 

Precompiler Trace 
SQL trace of the order interface. 

SQLDBC 
Trace for the SQLDBC (SQL Database Connectivity) interface. 

appldiag 
If errors between the runtime environment and the kernel occur, they are entered in the appldiag file. This file is 
created for each operating system user. 

xserver_<hostname>.prt 
If errors occur during communications via the x_server, they are entered in the xserver_<hostname>.prt file. 

rtedump 
If a crash occurs, the runtime environment writes its status in the rtedump file. It is an ASCII  output of the command
 x_cons <SERVERDB> show all  

dbm.* 
Various log files for the backup environment or for logging DBM server commands. 

KnlMsg (knldiag) 
The kernel writes information and messages to the KnlMsg file. It has a fixed size and is overwritten cyclically. After a 
crash, it also contains the backtrace. 

knltrace 
This file is written by the kernel when the Vtrace is activated and following a crash. It has a predefined, fixed length. 

knldump 
During an emergency shutdown, the global memory is written to the knldump file. The corresponding file system 
should be sufficiently large. 

 



 11 

Transaction sm21 displays the system log of the SAP system. The system log is not written under the 

control of the database, but it does contain information about database errors. 

 

  



 12 

In the SAP system, SQL errors in the database result in APAB short dumps when unexpected return 

codes occur.  

They are not written under the control of the database, but they can be useful for analyzing error 

situations because they present a full picture of the error. SQL errors are otherwise not logged by the 

database, unless the Vtrace has been explicitly activated. 

You can get a list of the short dumps that have occurred with transaction st22. 

The short dump itself records which program and which ABAP command within it caused the error. You 

can then search for the error code in the notes. 

If an unknown error occurs, it is often desirable to identify the command in "native SQL." To do this, in a 

reproducible case the SQL trace must then be activated with st05. At the same time, an analysis with the 

Vtrace may also be useful. 

If necessary, you can find helpful information about the versions you are using in the section “How to 

correct the error”. 

 



 13 

The developer traces are not written directly by the database, but rather log actions of the disp+work 

processes of the SAP system. 

The dev logs are stored in the work directory of the SAP system and have the designation  dev_w*. You 

can access them directly with transaction st11. 

They are active by default; only higher trace levels have to be activated explicitly. This is generally done 

by the developers themselves. 

However, they were included in this unit because other information relevant for the database is also 

stored there. 

If connection problems between the disp+work processes and the DB occur, developer traces are often 

helpful.  

Errors have a red background and thus are easy to find. 

Among other things, it is easy to find the version of SQLDBC or the precompiler environment being used.  



 14 



 15 

In the SAP system, you activate the SQL trace with transaction st05. The log is written by the database 

interface. Along with the statements, you'll find the variables, their values and the runtime. The Explain 

button in transaction st05 displays the database's Optimizer strategy for the command. 

This transaction is discussed further in the section on SAP system transactions that are useful for error 

analysis. 

The order interface of the database also writes an SQL trace. New versions of the WebAS ABAP kernel 

use the new interface SQLDBC instead of the Precompiler starting with version 6.20. 

 



 16 

You can use transaction st05 to activate an SQL trace. This is useful for performance analyses or for 

identifying a command that leads to incorrect result sets. 

The SQL trace displays all SQL statements in the form in which they were sent to the database. 

Note that when you use the button shown here, the trace must be deactivated before being displayed so 

that it can be formatted. You can display the trace directly by choosing Performance Trace->Display 

Trace Or Deactivate First 

For a more manageable amount of information, you can restrict the display to a specific time period or a 

particular user or by omitting information about specified tables.   

 



 17 

The list of commands identifies which transaction was started, which work process is affected, its type, 

as well as the client and user.  

The command list contains 

     - information about the duration of the command, where the long-running ones are marked red, 

     - the affected database object, 

     - the number of records found, 

     - the return code of the database and 

     - the statement.  

The statement can be expanded by double-click. It is also possible to insert parameter values in the 

placeholders so that the statement can be used directly for further testing, for example in the SQL 

Studio. 

The 'Explain' button displays the execution plan of the Optimizer. 

 



 18 

The order interface trace is set for Disp+Work processes using a profile parameter. On Windows 

systems, after changing the profile parameter, only the work process has to be restarted. On Unix 

systems, the SAP system or the affected application server has to be restarted. The trace files are 

stored in the work directory of the SAP instance. The name is comprised of the process ID of the 
work process and the ending  pct . 

Other tools that utilize the order interface read the environment variable SQLOPT. Unless otherwise 

specified with the -F option, the trace file is written to the current directory. The name is comprised of 
the name of the corresponding C module and the ending  pct . 

You can use irtrace to activate the trace without needing to restart the system/application server. 

The tool gives you the following options for changing the trace: 

 Activate/deactivate/switch trace for a particular process: 

irtrace –p <process id> –t <trace type> 

 The following trace types are available: 

long    

short    

off     

 Activating/deactivating the trace for all interface processes on the application server: 

irtrace –p all –t <trace type> 

 



 19 



 20 

SQL Database Connectivity (SQLDBC) is a runtime environment for the development of database 

applications and database interfaces for MaxDB. Through SQLDBC, applications can access MaxDB 

database instances, execute SQL statements and edit data. SQLDBC is comprised of the three 

abovementioned components, which are part of the standard and stored in the said directories. 

Traces can be created either directly with sqldbc_cons or using transaction db50.  



 21 

sqldbc_cons is a tool for the configuration and control of traces. 

The trace files contain a file name of the form sqldbctrace-<pid>.prt, where <pid> is the process ID. It is 

also possible to choose a name; %p in the name is replaced  by the process ID. Traces are stored in the 

directories <user_home>\Application Data\sdb (Windows) and <user_home>\.sdb (UNIX, Linux). When 

the configured trace size is reached, the trace is cyclically overwritten. 

Possible commands for sqldbc_cons: 

   TRACE SQL ON/OFF:    Turns the SQL trace on/off  

   TRACE PACKET ON/OFF:   Turns the PACKET trace on/off  

   TRACE SHORT ON/OFF:   Turns the SHORT trace on/off  

   TRACE LONG ON/OFF:   Switches the detailed LONG trace on/off 

   TRACE OFF:      Switches all SQLDBC traces off 

   TRACE FILENAME <file_name>:  determines the name of the trace file 

   TRACE SIZE <size>:    defines the size (in Bytes) of the trace file 

   SHOW ALL:      displays the configuration of the traces and current information 

          about the traces 

   SHOW CONFIG:     displays the configuration of the traces 

   SHOW TRACESETTINGS   displays current information about the traces 

Possible options for sqldbc_cons: 

   -f:   forces the execution of the command 

   -h:  Help information 

   -p <pid>: executes the command only for the process with the process ID <pid> 

   -v:  displays detailed information (verbose) 

               (These options cannot be combined, but only used individually.)    

 

 



 22 

In transaction db50, choose the path Tools-> SQLDBC Trace. 

 

Activating the trace involves three steps: 

 Selection of the desired process 

 Selection of the trace type (SQL, Short, Long, Packet) 

 Specification of trace size (Goto-> Maximum File Size) 

 

To switch the trace off, select the process and press the button Switch off. 

Via menu item Goto-> Trace Directory you can choose a trace file name that differs from the default.  

 

To display the trace, select the trace file and press the button Display File. 



 23 

The file appldiag contains error messages that can occur during communication between the 

applications and the runtime environment. 

The file appldiag or <pid>.dia (SAP WebAS) is stored in the directory 

 <globaldatapath>/wrk/<unix user> (UNIX) 

<globaldatapath>\wrk  (Windows) 

/usr/sap/<SID>/D*/work  (SAP WebAS) 

The <globaldatapath> can be determined using the following dbmcli command: 

 dbmcli –d <SID> -u <dbm-user>,<password> dbm_getpath globaldatapath 

(As of version 7.7 the appldiag can be found in the directory <indepdatapath>/wrk/<unix user>. The 

isolated installation had not been introduced in those versions.) 

 

Under Windows, appldiag is only activated if the environment variable is set to DIAGFILE=yes. 

The file appldiag can get very large since it is not cyclically overwritten. 

If this file already exists, further messages are added to it; otherwise it is created. 



 24 

The files xserver_<hostname>_<port>.prt contain error messages involving the communication via x_server. 
x_server are used for remote communication and start vserver processes for each new user who connects to the 
database remotely. When the isolated installation was introduced in 7.8 each server installation got an own 
x_server with its own port. 

If multiple database software versions (<= 7.7) are installed on a computer, the x_server must always be started 
with the highest version.  

You can display the highest version with 

             x_server –V 

You can display the possible options for installing, starting and stopping with 

             x_server –h  

 

If, f.e., there are network problems between the application and database server error messages are written to this 
log file.  

The start information (see slide) contains additional information about operating system settings that are significant 
for database operation. 

A time stamp, a process ID, in the label the affected software component and an explanatory message text are 
delivered. 

If a return code is reported by the operating system, its meaning can be determined with 

             xsysrc <rc>  

The xserver_<hostname>_<port>.prt are stored in the directory <globaldatapath>/wrk. The port can be 
determined with the following dbmcli command: 



 ‹#› 

dbmcli inst_enum <InstallationPath>  

Access via DB50: Problem Analysis -> Messages -> Kernel – Remote SQL Server 

Access via Database Studio: Diagnosis Files – XServer Messages / Xserver Messages (OLD) 

 

 



 25 

The Database Manager log dbm.prt comprises the command history of the Database Manager. All 

change actions and all actions that return error messages are logged. 

Because messages show the exact date and time, they can easily be referenced against the outputs of 

other log files.  

If errors occur in the action being executed, they are marked ERR. 

 

The file is stored in the run directory (default: <indepdatapath>/wrk/<SID>). 

Access via DBMGUI: Check -> Diagnosis Files -> Database Manager Log File (DBMPRT) 

Access via DB50: Problem Analysis -> Messages -> Database Manager 

Access via Database Studio: Diagnosis Files – Database Manager Log File 

 

  

 

 

 

 



 26 

As of version 7.7 no special utility log file is written. The information is now written to the dbm.prt. 

 

Up to version 7.6 all commands sent to the database kernel by the utility task are logged in the file 
dbm.utl. As of 7.5 user tasks executing utility statements also write into this file. The file is written by the 
database kernel. 

This file contains detailed information about backup and restore processes, configuration changes such 
as the addition of volumes, information about update-statistics processes and so on. 

In dbm.utl you can see whether operations have been successful from the point of view of the database 
kernel. When using external backup tools, it is important to take account of the corresponding log files as 
well, since errors can also occur on other levels during the transfer of backup information from the kernel 
to the tools. 

 

The file is stored in the run directory of the database (default: <indepdatapath>/wrk/<SID>). 

Access via DBMGUI: Check -> Diagnosis Files -> Utility Statements (UTLPRT) 

Access via DB50: Problem Analysis -> Logs -> Kernel Administration 

Access via Database Studio: Diagnosis Files -> Utility Statements 

  

 

 



 27 

The file dbm.knl contains a list of the backup and restore actions that have been executed.  

The file is written by the database kernel. 

You can identify what type of backup (DATA, LOG)  was executed, in which time period the execution 
took place, up to which log page number the data was backed up, which medium was used and whether 
any errors occurred. 

When using external backup tools, it is important to observe their logs as well, which are described in the 
following pages. 

 

The file is stored in the run directory (default: <indepdatapath>/wrk/<SID>). 

Access via DBMGUI: Information -> Backup History or Check -> Diagnosis Files -> Backup History 
(BACKHIST)  

Access via DB50: Problem Analysis -> Logs -> DBA History -> Backup/Restore (Kernel) 

Access via Database Studio: Diagnosis Files -> Backup History 

 

Because of the length of the output line, the file is somewhat difficult to work with; it is therefore a good 
idea to get a formatted display of the backup history with the Database Studio (Administration -> 
Backup) or transaction DB50. Errors are noted at the end of the output line. 



 ‹#› 

The transactions DBACockpit (as of version 7.0), db12 and db13(c) use this information about 
backups to, for example, propose a recovery procedure.  

 

 



 28 

SAP transaction db12 can be used to get an overview of backup and restore actions 

that have been executed.  

Here you can also get information about the scope and frequency of Update Statistics 

operations as well as a history of consistency checks. 

 



 29 

Information from the file dbm.knl is optically presented which allows to recognize 

directly if there are failed backups or  gaps in the backup history.  

The output is generated when the DBM parameter DBATL is set to 1. For further 

information, see the Note 431508. 

 

 



 30 

db13 is the scheduling calendar for backups, Update Statistics runs and consistency checks. A weekly 

schedule can be used to plan the regular execution of activities. 

Transaction DB13C is no longer required with WebAS 7.0 since transaction DB13 allows scheduling of 

activities for various instances. Integrate an instance with transaction DB59. Double-click to go to the 

database monitoring and via Tools -> DBA Planning Calendar to transaction DB13. Now the new 

instance will henceforth be known in transaction DB13. 

Further information can be found in note 431508. 

It is also possible to call the scheduling calendar with transaction DBACockpit (Jobs -> DBA Planning 

Calendar). 

 

If an error occurs during an action, it is displayed with a red background.  

The causes of errors can be determined with the familiar diagnosis files. The job logs may also contain 

information that is useful in this regard.  

 



 31 

For diagnosing problems with backups using external backup tools, the log file dbm.ebp plays a decisive 

role.  

In addition to information about the configuration parameter of the tool, dbm.ebp contains information 

about the commands sent to the database kernel as well as the backup tool call. The error position makes 

it possible to identify who was responsible for the problem. 

 

dbm.ebp is stored in the run directory of the database (default: <indepdatapath>/wrk/<SID>. 

Access via DBMGUI: Check -> Diagnosis Files -> External Backup Protocol  

Access via DB50: Properties -> Files -> BACKEBP 

Access via Database Studio: Diagnosis Files -> External Backup Protocol 

 

Note that this file is overwritten after each start of the DBM server when it communicates with the external 

backup tool. A new DBM server is started with each dbmcli call, to name one example. 

 

 



 32 

Because the file dbm.ebp is promptly overwritten, there is a summary of it called dbm.ebl. This log file 

contains the last <n> logs, the number of which can be configured with the DBM parameter 

DBM_EBLSIZE.  

 

The file dbm.ebl is stored in the run directory of the database ((default: <indepdatapath>/wrk/<SID>). 

Access via DBMGUI: Check -> Diagnosis Files -> External Backup Log 

Access via DB50: Properties -> Files -> DBMEBL 

Access via Database Studio: Diagnosis Files -> External Backup Log 

 

 

 



 33 



 34 

The file KnlMsg contains messages of the database kernel.It is recreated each time the database 

instance is started. The previous file is renamed to KnlMsg.old. The messages - apart from the header 

(start messages) - are overwritten cyclically. 

Error messages are recorded in KnlMsg but also - due to the risk that they will be overwritten there - in 

the file KnlMsgArchive (knldiag.err). This file is written continuously. 

As of version 7.7 KnlMsg files replace the files knldiag*. A specialty of the new files is that they are 

stored in an XML-like representation to make it possible in further states of expansion that together with 

the error messages directly instructions are delivered. This implies that the files – if you look at them on 

operating system level – have to be prepared before they can be displayed properly (see slide 

protconv). If you choose Database Studio, DBMGUI or transaction DB50 to display the KnlMsg the 

conversion to a readable format is done automatically. 

The files KnlMsg* are stored in the run directory of the database ((default: <indepdatapath>/wrk/<SID>). 

The size of KnlMsg can be changed by setting the parameter KernelMessageFileSize. 

(In versions 7.5 and 7.6 location, size and name of the file can be changed with the setting for the 

parameters _KERNELDIAGFILE and KERNELDIAGSIZE.)  

Access via DBMGUI: Check -> Diagnosis Files -> Database Messages 

Access via DB50: Problem Analysis -> Logs -> Kernel Administration 

Access via Database Studio: Diagnosis Files -> Database Messages 

 

 



 35 

Database Studio offers to the user to either display the file KnlMsg in the familiar classical way or in the 

XML representation (see above). By double-clicking a line in the XML representation you can get more 

information about the error (see next slide). 

 

Access via Database Studio:  

Diagnosis Files -> Database Messages 

Diagnosis Files -> Database Messages (OLD) 

Diagnosis Files -> Database Errors 

 



 36 

The following windows are displayed delivering more information about the error and proposing 

possibilities to correct the error. As mentioned above the windows are still partially empty and some 

more content is required. 

 



 37 

The tool protconv (with the options shown below) is provided to allow access to the KnlMsg on 

operating system level in a readable form. If no output file is specified the text is shown directly on the 

screen. You can use KNLMSG, KNLMSGOLD and KNLMSGARCHIVE als filekey (tag).  

protconv -help 

Usage: [-h [[<Option> | LONG]]] [-? [[<Option> | LONG]]] [-d <DBName>] 

       [-o <OutputFile>] [-f <OutputFormat>] [-t <FileKey>] 

       [-p <InputFilePath>] [-s <SortMode>] [-v] [-b <TimeStamp>] 

       [-e <TimeStamp>] 

 -h <...>          - help 

 -? <...>              - help 

 -d <DBName>   - name of the database 

 -o <OutputFile> - output file 

 -f <OutputFormat>    - output format (classic|plain(default)|xml) 

 -t <FileKey>         - file key 

 -p <InputFilePath>   - path to read input files from 

 -s <SortMode>          - sort mode (!ignored!) 

 -v                            - display message description from supplied files 

 -b <TimeStamp>       - output messages that were written after this time stamp only 

 -e <TimeStamp>       - output messages that were written before this time stamp only 



 38 

When the database crashes, support often needs to know at which point in the source code the 

database was when the crash occurred.  

On Unix/Linux, this information is usually generated from a core dump with a debugger. On Windows, 

this information is found in the file drwtsn32.log, but only if Dr Watson is registered as the system 

debugger.  

Core dumps can be very large. Writing a core dump delays the crash of the process.  

For that reason, when a crash occurs the MaxDB kernel automatically writes the backtrace stack and 

values of the CPU register to the KnlMsg (knldiag) file.  

 

If the problem is due to an error in the database software, the cause can usually be found using this 

information.  

In the present example we see a simulation of an I/O error during writing to a log volume. It is not a 

software error.  



 39 

If the file KnlMsg has already been overwritten, you may still find useful information here. 



 40 

The kernel trace, or Vtrace, is used for analyzing executed SQL statements. 

When you activate Vtrace, you specify which areas of the kernel the file knltrace is written from. 

Generally a default setting is taken. 

The kernel trace is not active by default. The default trace has a minimal effect on system performance. 

Each UKT writes to its own main memory buffer, precluding collisions during trace writing.  If you select 

other options, however, writing the trace can be resource intensive and should be done only where 

needed for problem analysis. 

 

For the trace output, you specify the levels or modules of the kernel for which the logs are to be 

extracted.  

Data concerning strategies and times is only output if the options OPTIMIZER or TIME, respectively, are 

active for the Vtrace.  

The SWITCH output contains data from the trace of a so-called slow kernel. A slow kernel is a special 

MaxDB debugging kernel. It is only used upon the special request of development or support. 

 

The Vtrace can be activated for a single user session (FOR SESSION). 



 ‹#› 

To prevent cyclical overwriting, the writing of the trace can be switched off automatically when 

a specified error code occurs (STOP ON ERROR).  

 



 41 

Switching the Vtrace on or off as well as flushing it can be done with the dbmcli, the Database Studio or 

DBMGUI and with transaction db50. Flushing the Vtrace can also be done with the SQLSTUDIO. 

Required dbmcli commands: 

Activate: 

dbmcli –d <SID> -u <dbm-user>,<password> trace_on default 

Flush:  

dbmcli –d <SID> -u <dbm-user>,<password> trace_flush 

Deactivate: 

dbmcli –d <SID> -u <dbm-user>,<password> trace_off 

Evaluate: 

dbmcli –d <SID> -u <dbm-user>,<password> trace_prot <options> 

 

In the context menu of the installed databases the trace can be switched on and generated as a readable 
file with.  

Database Trace -> Options 

Database Trace -> Generate 



 42 

You can administer the database kernel trace with the DBMGUI. 

Unless otherwise specified by development or support, the default Vtrace is sufficient. 

You can also activate information about DELETE, INSERT, UPDATE, SELECT and Optimizer 

operations.  

The Vtrace can be activated and deactivated, flushed, initialized and displayed using the buttons. During 

initialization, all information in the trace buffer is deleted. 



 43 

TRACE SESSION 

The Vtrace can be activated for particular database sessions. To do so, however, the database session 

must be known.  

The ouputs of  

    x_cons <SID> show active and  

    SELECT * FROM TRANSACTIONS  

are helpful in this regard. 

STOP ON ERROR 

You can set the Vtrace so that it is automatically switched off when a certain error occurs. This is useful 

when you want to reproduce a particular problem and know which error will occur. This function prevents 

relevant information from being overwritten. 

 



 44 

On the ‘Protocol’ tab, you can sort the information from the knltrace file and extract desired areas to an 

ASCII file.  

You specify the layers or modules of the kernel for which you want to extract the trace outputs; 

DEFAULT: abkmx.  

Data concerning strategies and times is only output if the options OPTIMIZER or TIME, respectively, are 

active for the Vtrace. 

The SWITCH output contains data from the trace of a so-called slow kernel. A slow kernel is a special 

MaxDB debugging kernel. It is only used upon the special request of development or support. 

 

 

 



 45 

You can display the contents of the Vtrace via the menu path ‚Check -> Files -> Kernel Trace 

Protocol‘  

Even if you can find the evaluated error using the search function, it is all but impossible for a customer 

to form an independent interpretation of this trace. Errors can be found here only with knowledge of the 

source code. Thus the trace file should be provided to development. 

 

 

 

 



 46 

Administering the kernel trace (vtrace) can also be done with transaction db50. 

Initialize Trace: If you want to be sure that only subsequent database actions are logged, choose ‘Init 

Trace’.  

Activate Trace: To activate the trace, first choose your trace options, (usually default options) and then 

‘Trace On’.  

You can activate more trace options while the trace is running by selecting them and choosing ‘Trace 

On’ again. 

 

Then the program that received the short dump, for example, is restarted. 

The "Status" column shows whether the trace is currently activated, and with which options. The 

activated options are displayed in green. 

 



 47 

On the ‘Set Extended Options’ tab, you can determine whether the kernel trace should be written only 

for a selected session and whether it should be stopped automatically in case of a selected error code in 

order to prevent overwriting. 

 



 48 

When the program you want to check has been terminated, the Vtrace has to be flushed so that the 

information in the buffer is written to the disk. 

Flush Trace Buffer : To analyze the trace, choose ‚Flush Trace‘. 

Format Trace : To format the trace to a legible form, first select the desired layers and then ‘Evaluate 

Trace‘ 

 



 49 

Display Trace : Immediate display can be effectuated with ‘Display Trace’. 

As the resulting file <SID>.prt can attain a considerable size, you can use the right-hand button to save 

to a local file. 

The extracted trace is then read and analyzed by support and development. Knowledge about the 

source code is required for further interpretation. 

 

 

 



 50 

In case of crash or hanger situations due to manual interventions, the database generates a dump that 

contains the information from the global memory. 

UNIX: No dump is written if the database crashes due to a UNIX signal. 

 

The file knldump is stored in the run directory of the database ((default: <indepdatapath>/wrk/<SID>). 

If there's not enough space in the filesystem here, for example, you can change the location and name of 

the file with the parameter KernelDumpFileName (_KERNELDUMPFILE). 

As this is a binary file, displaying it with the Database Studio, DBMGUI or transaction db50 is not useful. 

 

As default the parameter AbortHandlingMode is set to BacktraceOnly. This has the effect that MaxDB 

does not write a knldump in case of a crash; the output of a core file is also suppressed. 



 51 

If a crash occurs, the status of the runtime environment is recorded in an rtedump. 

The data corresponds to that in the output of x_cons <SID> show all 

The file can be viewed directly in a system editor; no further formatting with a tool is required. 

 

The file rtedump is stored in the run directory of the database ((default: <indepdatapath>/wrk/<SID>). 

Location and name of the file can be changed with the setting for the parameter RTEDumpFileName 

(_RTEDUMPFILE).  

Access via Database Studio: Diagnosis Files -> Runtime Environment Dump 

Access via DBMGUI: Check -> Diagnosis Files -> Runtime Environment Dump (RTEDUMP) 

Access via DB50: Properties -> Files -> RTEDUMP 



 52 

In addition to the information from KnlMsg (knldiag) , the output of rtedump can be of use in analyzing 

crashes. This can be the case for a variety of reasons as this dump contains a plethora of information 

from the runtime environment. But these special cases will not be discussed further here. 

An example is shown on the slide. rtedump can help identify the command that caused a crash by 

determining the tasks that were active at the time. They are in the x_cons <SID> show task part of the 

output and marked "Running". In the detailed information for each individual task you'll find the 

application server under “remote_node”. In the system log or the dev logs of this application server, 

commands are logged that led to some problem. Even if it cannot be guaranteed that the identified 

command was solely responsible for the crash, it is still worthwhile to try to reproduce the crash and (for 

instance with activated traces) determine the cause of the error. 



 53 

If corrupt pages are identified, they are written to the file system so they can be subjected to further 

analysis. 

A corrupt page is dumped as a *.bad file if the I/O check found an error while importing a page (check 

sum error). 

A *.cor file is generated if a content problem is identified with the available context knowledge while 

working with a page in the cache. 

 

The files are generated in the run directory of the database ((default: <indepdatapath>/wrk/<SID>.  

As these are binary files, display with Database Studio, DBMGUI or transaction db50 is not useful. 

Evaluation is done with the tool x_diagnose. 

 

 

 



 54 

With Database Studio you can access via context menu for the selected database to the presentable 

diagnosis files. Binary files like Database Dump (knldump) or Database Trace (Raw/Binary) cannot be 

displayed without former evaluation. The Kernel Messages (KnlMsg) files stored in XML format are 

directly shown in a readable form. 

 



 55 

With SAP transaction db50, error diagnosis can be performed for a running (online) database using the 

SAPGUI.  Which tool you use is a matter of personal preference; however, this redundance is often 

useful, for instance if only certain activity types or not all passwords for the various access types are 

available to you. 

db50, then, also allows simple access to all diagnosis files of the database via the menu option 

Properties and the Files tab. Here you see an unarranged list; the actual contents of the most important 

diagnosis files are still located on the various menu paths. 

Using transaction db59, you can administer multiple MaxDB and liveCache instances from a SAP 

WebAS. 



 56 

As of WebAS version 7.0 the transaction DBACockpit can be used as a central tool for database 

administration. In addition to several administrative tasks that are also provided by transaction db50, in 

the cockpit the planning calender is maintained. Backup activities, update statistics and consistency 

checks can be scheduled here. 

 

 

 



 57 

dbmcli is used for line-based database administration work; the name is an acronym for Database 

Manager Command Line Interface. 

It can be useful for short ad hoc queries in a telnet session or for use in scripts. For more extensive 

administration tasks, the DBMGUI is preferable as it initiates the action and does not require precise 

knowledge of the command sequences, which can be very complex. 

Commands are sent to the DBM server, which processes the requests; the commands that have been 

sent are logged in the file dbm.prt . 

The dbmcli allows you to open a utility or an SQL session, which means that SQL queries can be sent 

to a database in the online operational state. The utility session is meaningless and only exists because 

of compatibility reasons. 

 



 58 

The dbmcli, as the illustration makes clear, has an extensive range of functions. You can display the list 

of possible commands in a dbmcli session with help. The help information contains additional 

information about which parameters have to be entered and what type of logon is required.  

Some commands cannot be used alone, but only make sense as part of a command sequence.  

 



 59 

The examples show some commands that are useful for diagnosis; these are stand-alone commands 

that can provide an initial overview of the situation. 

In command 60, in addition to logging on with the DBM operator, you must also specify a user authorized 

to access database objects. 

 



 60 

dbmgetf is a tool that enables quick access to log files, for instance in a telnet session. It is mainly used 

internally since, in general, the GUI-supported display options are more convenient.The KnlMsg files are 

automatically transformed to a readable format. 

 

With the -n option, you can specify a computer on which you want to enable remote access. 

The log files are not addressed by the names stored in the operating system, but rather by abbreviations, 

which can be displayed using the -l option. 



 61 

There is an automatic procedure for receiving important information about crash situations. 

The following files do not have to be explicitly backed up after a crash since they are automatically 

copied to a backup directory:  
KnlMsg (knldiag), knltrace, knldump, rtedump, *.dmp, *.buf, *.stm 

If the database recognizes that it is being restarted after a crash, then the necessary files are backed up 

to a directory with the following naming convention: 

 <DB-NAME>_<DATUM>_<ZEIT>, e.g.: S10_20001114_12-09-45 

The backed up diagnosis files are deleted from the original directory.  

The backup directory is under the directory DiagnoseHistoryPath (DIAG_HISTORY_PATH) (which 

must be configured) and is referred to as the history in the following. 

You can also configure the number of histories with parameter DiagnoseHistoryCount 

(DIAG_HISTORY_NUM). If you exceed this number of histories, then the oldest history is deleted when 

a new backup is made. 

The database can still be restarted if a backup cannot be made correctly. 



 62 

Check Data (previously Verify) checks the structural consistency of the entire database. It considers 

tables as well as indexes and LOB columns. 

The semantics of the data model is not taken into account. Logical errors are not found, but only errors 

caused by hardware defects.  

Every page contains a check number. This is calculated with each read-I/O and compared with the value 

stored on the page. If the values are different, there is an error.  

One typical error that may be detected is BAD DATA PAGE. 

 

Check Table checks all dependencies and links within the specified table tree. Indexes are not taken 

into account. 

 

 



 63 

Another diagnosis option is calling 

           CHECK DATA EXTENDED. 

This performs a more precise check of the key lengths and checks the sequence of the primary keys on 

all levels of the B* tree. Because this option is CPU-intensive, execution was not standard in older 

versions. As of version 7.6.01 it is standard behaviour for CHECK DATA and CHECK TABLE, because 

CPU load can now be neglected due to the performance of modern CPUs.  

The option WITH LONG CHECK makes an additional check of BLOBs. As the name in older releases 

suggests, a lock is set on tables while the command is executed.  

To save time when checking the database, you can use the option EXCEPT INDEX. Secondary indexes 

are not checked in that case. 



 64 

The structural consistency of the database can be checked in different ways. 

If you choose 'Check database structure (all objects)‘ transaction db13, all B* trees, including 

indexes, are checked. ‚Check database structure (only tables)‘ checks only the tables. 

You can also start consistency checks with the dbmcli: 

- dbmcli > db_execute check data (checks all tables and indexes) 

- dbmcli > db_execute check table <owner>.<tablename> (selection of a table)                             

Transaction db50 enables you to select a table for which ‚Check Table‘ (see next slide) is then initiated. 

 



 65 

In Database Studio choose ‚Check Database Structure‘ in the context menu of the database. There are 

different choices. 

A consistency check can be executed in different operational states of the database. In ONLINE state the 

structural consistency of all tables, indexes and LOB columns is checked. In ADMIN mode additionally 

the converter is updated; pages with no more references are deleted. 

The check can be restricted to one table. 

The amount of data to be checked can be restricted with the option ‚Except Indexes‘. As of version 7.6.01 

an EXTENDED check is automatically done; so there is no more need for the database studio to provide 

this as an option. 

Database Studio shows in the status information (Progress) that a CHECK DATA is executed right now. 

There is no feedback given if the execution was successful. In case of errors a popup is shown describing 

the first error.   

A check of the database structure is time-consuming and CPU-intensive. For a productive system the 

check should be planned for times of low workload (f.e. on weekends) or. if possible, the check should be 

done on a separate system copy. 

 

 

 

 

 

 



 66 

The check can be restricted to a specified table.  

With CHECK CATALOG the catalog information of a chosen table can be checked. 

 



 67 

The successful end of CHECK DATA can be checked in dbm.prt or in file KnlMsg (knldiag). 

If in dbm.prt a returncode 0 is delivered the CHECK DATA was successful. In the KnlMsg at the end of 

the progress report a success message is written. 

 



 68 

If in dbm.prt a returncode unequal to 0 is logged, there is an error situation and the defective data object 

has to be found out. The roots of the defective B* trees are listed in KnlMsg. 

At the end of CHECK DATA Database Studio opens a popup showing the first errror that occurred. 

Information about further errors has to be gathered from the diagnosis files. 

 



 69 

In the DBMGUI, choose Check -> Database Structure. There are several options. 

A consistency check can be done in various operational states. In the ONLINE operational state, the 

structural consistency of all tables, indexes, and LOB columns is checked. In the ADMIN operational 

state, the converter is also updated; pages that are no longer referenced are deleted. 

The check can be restricted to a single table. 

 

 



 70 

The selection options EXTENDED, EXCEPT INDEX, WITH LONG CHECK have already been 

explained. 

CHECK CATALOG enables you to check the catalog information of a selected table.  

 



 71 

Before you overwrite the backups of one generation, you should make sure that you have an intact 

backup. 

Since the check of a backup is executed on a special service database which merely uses disk space for 

log files, no resource bottleneck occurs.  

The service database is automatically registered when a database instance is created and is stored 

under the name .M<version> (e.g.: .M750019). 

(In older releases, the Name _SAPDB<SID> was used, though the name was shortened to 8 characters, 

so part of <SID> was lost.)  

For a restore, the processes are logged in KnlMsg (knldiag) and the I/O can be monitored with x_cons.  



 72 

In the Database Studio, you can execute a check of a backup by choosing ‘Check Backup’. 

Then you have to select the appropriate backup medium. 



 73 

A successful executiion of a Check Backup is marked with a green check mark. After the check of a 

data backup you will automatically be guided to the check of the corresponding log backups. 



 74 



 75 

"Connect" problems can usually be reproduced quite easily with R/3trans. Call R3trans with option –d or 

–x.  

The Precompiler Runtime of the database creates a trace if the variable SQLOPT contains the value "-

X". The trace is written to the file SAPDB.<PID of the client process>.pct. 

In this example either the user name or the password is incorrect. The user SAPXX is probably not 

correct.  

Check the xuser specifications with the command "xuser list". Maintain the xuser data as described in 

note 39439. 

With "Connect" problems, it is often helpful to have a look in the dev logs (the dev_w* files from the work 

directory in the SAP system).  



 76 

For a few years the WebAS kernel uses the MaxDB client SQLDBC instead of the precompiler. To 

analyse the cause of connect problems here, too, the call of R3trans –d/-x is the adequate way to find out 

what‘s wrong. 

 

If a connect request cannot be executed correctly in most cases errors in the xuser data are responsible 

for the problems.  

 

R3trans –d creates a file trans.log providing more information about the cause of the problem. 

 



 77 

A Log Full situation first manifests itself in that an hourglass is displayed for all dialog users who are 

performing change actions. This suggests that the database is at a standstill and the user tasks have 

been suspended. 

The Database Studio directly shows the state of the database next to the database name and 

additionally provides  information about how to handle the error situation in the graphical representation 

of filling grades.  

A quick glance in the DBMGUI shows that the log is 100% full, both in a bar and in text form. 

Alternatively, KnlMsg/knldiag and x_cons offer the same information.  

As a general rule, we recommend using automatic log backup, which usually keeps this situation from 

happening.  

 



 78 

A Log Full situation can ONLY be resolved by executing a log backup. 

The Backup Wizard guides you through the required steps. 

 

Adding a new log volume is NOT a possible way of solving the problem. As log volumes are cyclically 

overwritten, the pointer is usually 'somewhere in the middle' of the device and cannot jump to a new 

volume.  

 



 79 

A DB Full situation first manifests itself to the user exactly as it does with a Log Full. The user tasks are 

suspended and no further actions are possible. 

Here too, the DBMGUI (without picture), KnlMsg/knldiag and x_cons provide information about the 

hang situation. 

 



 80 

To resolve a DB Full situation, you have to add another data volume.  

To do this with DBMGUI, choose Configuration -> Volumes‘. 

The DBMGUI generates default values for the new volume and directs the rest of the process. 

 

Choose Administration -> Data Area -> New in Database Studio to create a new volume. 

 

This problem can be prevented by using the AUTOEXTEND functionality. If a defined filling grade is 

reached automatically a new volume is added.  



 81 

The first place to look after a database crash is KnlMsg/knldiag. In this example, the database process 
on Unix/Linux received signal 9. Signal 9 comes from "outside" and is not caused by the database. On 
Unix you can find a short description of the signals in the file /usr/include/sys/signal.h. Linux stores these 
definitions in /usr/include/bits/signum.h. 

 

Interesting signals: 

 SIGILL  4        /* Illegal instruction (ANSI).  */ 
This signal comes from outside and implies a hardware problem. 

 SIGABRT  6        /* Abort (ANSI).  */ 
Termination without further information. 

 SIGKILL  9        /* Kill, unblockable (POSIX).  */ 
Process/thread was terminated with kill. 

 SIGBUS  10     /* bus error */ 
Error predominantly in the bus system; usually an error in the database software. 

 SIGSEGV  11    /* Segmentation violation (ANSI).  */ 
Memory overwrite; usually an error in the database software. 

 



 82 

On some operating systems tools make sure to provide resources in situations with not enough memory 

for all running applications by killing some processes which are using a large amount of memory. 

 

Under Linux, f.e. this is the so-called oom-killer (out of memory). 

 

In the KnlMsg you will also find a crash with signal 9. For verification that an operating system tool 

caused the crash you have to look into the file /var/log/messages. You will find an entry at the same time 

that a process intentionally was killed because of lack of resources. 

 

To prevent those crashes make sure to enhance the memory or reduce the number of running processes. 

If you switch off the mechanism you might prevent the „kill“ but the real problem of overcharging the 

machine still persists. 

 



 83 

To provide more analysis information after a crash situation the so-called post mortem console has been 

introduced. It can only be used on UNIX systems. 

 

When a database is started, in the sub-directory of the rundirectory rtedump_dir the files 

RTEMemory_Chunk.* are created containing relevant information from the shared memory for the 

runtime environment  This information is also accessed when you call x_cons in running operation. 

To allow x_cons commands also after crash situations these files are maintained for later analysis. If the 

database is restarted the current RTEMemory_Chunk.*  are copied to RTEMemory_Chunk.*.old. 

Furthermore in case of a crash they are kept in the diagnose history.  With the use of option –p 

<archive_path> x_cons can be informed from which directory the files have to be used. 

 

In the present example the database Q1K crashed. As first analysis step you should search for modules 

from the backtrace in known problem messages. If it is not a known crash which had happened before 

and was already analysed the information delivered by the post mortem console might be helpful. x_cons 

can be called and look for the formerly active tasks. Via the application PID the command responsible for 

the crash can be identified in the dev traces. 



 84 

Errors while writing to the database log are very critical, in particular if the database is not being 

mirrored. 

 

Determine the cause of the I/O error. For this example, the error has been simulated. 

If the log is mirrored on the database side, then 

 provide a new disk for the log volume, 

 transfer the database to the ADMIN operational state and execute a restore for the volume 

using:  

dbmcli > db_execute restore log volume ‘<name of the volume>‘  , 

 start the database ONLINE. 

If the log is mirrored in the system, check whether the error can be corrected in the system. If that is the 

case, start the database in the ONLINE operational state after the correction has been made. 

If the log is irreparable, proceed as follows: 

 Create a data backup. The backup is consistent on the basis of the last savepoint. 

 Back up the current log area. If the log area cannot be backed up, you can use the generated 

data backup. 

 Initialize the instance when a functional disk has been provided for the log volume. Import the 

data backup and the generated log backup.  

You use Database Studio (Inittialize Database or Create Database) or the Installation 

Wizard of the DBMGUI to initialize it.  

 



 85 

This example shows a system hanger situation.  

Transaction sm50 or sm66 show numerous dialog processes that are executing updates on table 

ZZTELE. If transactions sm50 and sm66 are no longer usable because all dialog processes are 

occupied, call the program dpmon on the operating system level. In the 'Menu' there you'll see a 

comparable output. 

The database console shows the respective tasks in the Vwait status. The tasks are waiting for the 

release of an SQL lock. 

At present no other task is active in the database; that is, the lock holder is active in the application or 

waiting for user input. 



 86 

Transaction db50 provides more information under 'SQL Locks -> Wait Situations‘. All waiting tasks are 

waiting for task 48. This task belongs to application process 9008 on the server dewdfm189. The server 

is not a SAP application server. 

 

User operations generally have priority.  Task 48 should therefore be forced to release the lock. 



 87 

Under 'Current Status -> Kernel Threads -> Task Manager‘, transaction db50 displays the task 

activities. Task 48 is not active. The running task 64 formats the information for db50 itself.  

To terminate 48, display all user tasks. Select task 48 and choose ‘End Session'.  

It is not possible to terminate a command for task 48 if task 48 is not active. The lock can only be 

released by terminating the transaction. If the locking transaction is not active in the database, its 

transaction can be terminated by closing the session.  

If a work process which is holding locks is active on the database, the termination of the command leads 

to the termination of the transaction. When it receives return code -102, the SAP system rolls back the 

transaction and writes a short dump. 



 88 

The action 'Terminate Command‘ in transaction db50 corresponds to the console command 'cancel 

<task>‘. You terminate user sessions with 'kill <task>‘. 

 

Terminating the locking transaction can take some time. MaxDB works with cooperative multitasking. 

The tasks are not managed through a dispatcher instance.   

Some actions only check whether the termination flag is set every 30 seconds. 

In the console output, if the termination flag was set, this is indicated by an exclamation mark.  If the task 

remains active (in particular in the Running and I/OWait statuses), it executes a rollback of the changes 

that have already been made. 



 89 

In this example the database cannot transfer to the ADMIN operational state because the operating 

system cannot allocate enough memory. 

The file knldiag shows an excerpt of the limitations for the user. These limitations are inherited from the 

owner of the x_server process.  

When you start the x_server, make sure that the user has set sufficient limitations. On Unix/Linux, you 

set limitations either with limit or ulimit, depending on the shell.  

Check the limitations of the x_server process in the file <indepdatapath>/wrk/xserver*.prt. 

This case can be resolved by setting the limitations correctly and restarting the x_server. 



 90 

The file dbm.knl presents a first overview of which backups and which restore activities were 

successfully executed; or for a more orderly display in the form of a backup history in the Database 

Studio choose Administration -> Backup or Information->Backup History in the DBMGUI.  

If any errors have occurred, the causes are noted in brief. More precise information can be found in 

KnlMsg/knldiag. 

Up to version 7.6 the file dbm.utl provides information about backups. As of version 7.7 the information 

from dbm.utl is integrated into other diagnosis files (KnlMsg/dbm.prt). 

 

If external backup tools (Networker, ADSM, Omniback, etc.) and the backint interface are being used, 

you should also check their logs, which are described in the following. 

 

 



 91 

In the present example, the restoring of a backup terminated with a system error. 

First, the system attempts to repeat the procedure with various backups. It turns out that several 

backups have already been affected and that a restore returns error -9026. 

At this stage, the user should check the logs to see what they say about the backups, e.g. whether they 

were successful, etc. 

 

 



 92 

Looking at dbm.utl is not sufficient! The return code 0 here shows only that the backup was successful 

from the database's point of view. In other words, it correctly delivered all database pages to the pipe of 

the external database tool. 

In dbm.prt we see that the backup could not be completed successfully. The cause is not immediately 

visible in this file, but the tool has signaled that the backup failed from its point of view. 

Backups that have the return code 0 in dbm.utl (that is, on the kernel side) but failed according to 

dbm.prt are identified as having failed in the backup history  (DBMCLI -> backup_history_list as well as 

in  DBMGUI). The error code, then, is the error code of the backup/restore (generally -24920). 

 



 93 

The log of the backup tool provides information as to why the backup was not considered successful. 

There is a big discrepancy between the number of bytes backed up by the database kernel and the 

number of bytes given by the Networker which cannot be explained by rounding errors.   

Here we cannot identify the cause, which could only be determined in cooperation with the Networker 

manufacturer Legato. While a file system backup was in progress, the Networker failed to end the data 

backup correctly when it accessed the data backup pipe.  

MaxDB now ensures that file system and database backups remain separate.  

 

 

 



 94 

In this example, the restore of a log backup terminates with system error -9030 (bad log page). 

During the attempt to repeat the restore process completely, there was already a problem with the data 

backup. Subsequently, however, the data backup (with the same label) was successfully recovered.  

This non-deterministic behavior suggests a problem with the tape peripherals. In such cases, checking 

the tape drives and the controller and changing the defective device will solve the problem. 

With luck, the problem will have been merely a read error; in the worst case scenario, the tapes will 

already have been incorrectly filled.   

 

 



 95 

Backups for SAP MaxDB are always triggered by the DBM Server – either through the DBMCLI or through Database 

Studio. The DBM Server is also the component which starts the external backup tool. The backup procedure works 

as follows: 

1. The DBM Server sends the backup command to the database kernel. 

2. The database kernel creates and opens one or more pipes (as specified in the backup template used by the 

DBM Server). 

3. The DBM Server starts the backup client of the backup tool as soon as the database kernel opens the first pipe. 

Which backup tool is to be used is also specified in the backup template. 

4. The backup tool opens the pipes, transfers the data to the backup server, and stores it on tape. 

5. The database kernel records the result of the backup in the backup history. 

6. The DBM server requests the unique backup IDs (External Backup ID) from the backup tool and enters these in 

the External Backup History (dbm.ebf). -This makes it possible to link the backup IDs generated by the 

database kernel with the backup ID of the external backup tool. 

7. The backup is logged in the External Backup Protocol (dbm.ebp). 

External backup tools can not be used directly for automatic log backups. Automatic log backups are triggered 

directly by the database kernel, which isn’t aware of the configuration of external backup tools. Automatic log 

backups can only be performed to versioned files. However, the usage of a so called log staging area is supported 

which can be configured in a way that the versioned files created by the database kernel are backed up to an 

external backup tool. Details about this follow later in the session. 

 



 96 

Before you can perform backups, you must define the relevant backup templates. You can create and change 
backup templates or template groups of parallel backup media in Database Studio in the backup section of the 
Administration window by choosing Templates. 

To be able to create a parallel backup template, you must set the value of the "MaxBackupMedia" parameter to 
match the number of individual templates in a parallel backup template. For example, if a template group is to 
comprise 10 individual templates, the value of the "MaxBackupMedia" parameter must be "10“ (or higher). 

You can specify the following information for the template:  

 Name of the backup template. This name is freely definable and is not dependent on the storage location used 
(Device/File). 

 Backup Type: Specify the type of backup for which this template is to be used. 

 Device Type: Tape, file, or pipe – if an external backup tool is to be used, the Device Type must be set to pipe. 

 Backup Tool: Type of external backup tool (if applicable) 

 Device/File: Path to a device, name of a defined pipe, or name of a file including its path. If you do not specify a 
path, a file is created in the run directory of the database instance. 

 Size: Maximum size of the backups that can be created on this template (if you do not make an entry in this field, 
files of unlimited size can be created). 

 OS Command: In this field, you can specify operating system commands for backups to tape. 

 Overwrite: This option enables you to perform successive backups to the same file, overwriting the previous 
backup each time. Use this function carefully since it makes it impossible to restore one of the previous backups. 

 Block Size: The entry in this field defines the size of the data blocks to be written to the template. If page 
clustering is used for the instance, the value in this field must be larger than a multiple of the cluster size used 
(minimum block size, for example, of "64"). 

 Autoloader: Select the Autoloader checkbox if you want to use a tape device with automatic tape swapping. 

The above examples show one template which can be used for a backup to Networker and a template group 
comprising of 2 single templates which can be used for a parallel backup with Backint. 

 



 97 

MaxDB supports different external backup tools and backup techniques: 

 Networker (NSR) 

 Tivoli Storage Manager (TSM) 

 Tools supporting the interfaces Backint for MaxDB or Backint for Oracle (BACK) f.e. 

 HP Data Protector >6.0 supports Backint for MaxDB 

 Comvault QiNetix > 6.1 supports Backint for MaxDB 

 All other external backup tools known to the market which are not mentioned here have to be 

configured via Backint for Oracle. According to experience they need additional adapters from the 

vendors of external backup tools. 

 

To support one of these tools it is necessary to define pipe as Device Type of the backup template. 

Some more example definitions for templates under Unix and Windows: 

 Windows: First tape device: \\.\tape0  

 Pipe: \\.\pipe\PipeName 
UNIX: Tape device, f.e.: /dev/tape0 

 Pipes: /backup/pipe0  
Template definitions are stored in the file dbm.mmm in the rundirectory of the database instance. 

 

 



 98 

The Backup History contains information about all successful and unsuccessful backups. Detailed information fo 

each entry is available in the Details section. Here also the external backup ID is displayed, if an external backup 

tool was used. 



 99 

When using DBMCLI, a backup of the database is done with the help of the backup_start command. 

As the DBMServer recognizes the backup tool to be used from the backup template, there is no difference in the 

backup command between a backup with and a backup without a backup tool. 

 

As more than one DBMServer command is needed for displaying the External Backup Identifiers, an interactive 

dbmcli session must be used. 

The columns of the displayed list are separated by the pipe character (|). 

The list has the following format: 

<Availability>|<External Backup ID>|<backup type>|<date_time>| 

If in an answer to backup_ext_ids_list or backup_ext_ids_listnext a line with a keyword CONTINUE follows the line 

with the keyword OK, the next part of the list can be requested with the backup_ext_ids_listnext command. 

 

A restore is done with the commands recover_start and recover_replace (for restoring more than one log backup). 

The keyword EBID (or ExternalBackupID) is followed by a comma-separated list of External Backup IDs. With 

parallel backups, all External Backup Identifiers of the individual backup parts must be transmitted as a comma-

separated list enclosed in double quotes ("<ExtBackupID_1>, <ExtBackupID_2>, ...,  <ExtBackupID_n>").                                                       

Further Examples:                                                                     

recover_start ADSM LOG EBID P47579_DB7_2001.03.30_15.51.20_SAVELOG_ADSM       

recover_start NSR DATA EBID "NST 985877420 P47579"                            

recover_start BACK PAGES EBID "DB72 985963853 \\.\pipe\b1,DB72 985963913 \\.\pipe\b2"  



 100 

The database manager log file dbm.prt contains the backup and recovery calls and – if an error occured - the error 

message. Therefore this log file can (in addition to the backup history and the external backup history) be used to 

check the success of a backup/recovery. 

 

Detailed information regarding the backup/recovery can be found in the external backup protocol (or if this file has 

already been overwritten in the external backup log dbm.ebl). In addition to information about the configuration 

parameter of the external backup tool, dbm.ebp contains information about the commands sent to the database 

kernel as well as the backup tool call. The error position makes it possible to identify which component was 

responsible for the problem. 

Depending of the cause of the error, it might be necessary to analyze log files of the backup tool. 

In case the cause for the backup or recovery failure is not the communication with the external backup tool or 

problems of the external backup tool, but in the actual processing of the data by the database kernel, the database 

messages file KnlMsg should be checked for more detailed information regarding the problem. 

 



 101 

In file dbm.prt you can see that the backup was started to a backup template called DataBackupBackint. The exact 

statement sent to the database kernel is logged as well as an error messages. 

Error message „The backup tool failed with 2 as sum of exit codes. The database request was canceled and ended 

with error -903.“ indicates, that the backup tool caused the problem and that the database request was only 

cancelled as a result of that failure. So the error analysis has to concentrate on the backup tool and its configuration. 

 

 

dbm.prt is stored in the run directory of the database (default: <indepdatapath>/wrk/<SID>). 

Access via DB50: Properties -> Files -> DBMPRT 

Access via Database Studio: Diagnosis Files -> Database Manager Log File 

 



 102 

This is the beginning of file dbm.ebp. You can see that variable BSI_ENV is set to C:\TOOLS\parfiles\bsi.env. Next, 

the configuration parameters read from this file are listed. In case a parameter is spelled incorrectly, this would be 

visible here, as unknown keywords are explicitely listed. 

In this example, the configuration file is fine. 

The backup request was sent to the database successfully and afterwards Backint for MaxDB was started 

successfully as well. 

So far, everything looks fine – however, the log file is continued on the next slide… 



 103 

Once the database kernel and the backup tool are started, the DBMServer determines their state regularly. As you 

can see, the backup tool failed shortly after it was started, error message „The backup tool process has finished 

work with return code 2.“ is logged. 

 

As a consequence of that, the database request was cancelled by the DBMServer. 

In the output information of Backint for MaxDB you can find the reason for the failure: the parameter file 

'C:\TOOLS\parfiles\backintmaxdbconfig.par' specified in the bsi.env file could not be found by Backint for MaxDB. 

Therefore the tool could not start to work on the backup request. 



 104 

The file dbm.ebf contains the backup history, the backup ID, external backup IDs and error messages. This file is 

written consecutively and is NOT cyclically overwritten, so that the entire backup history is available for support.                               

If a backup tool was able to backup successfully, but could not determine the external backup ID, the backup is 

entered as failed in the backup history.  

 

dbm.ebf is stored in the run directory of the database (default: <indepdatapath>/wrk/<SID>. 

Access via DB50: Properties -> Files -> BACKEBF 

Access via Database Studio: Diagnosis Files -> External Backup History 



 105 

One typical user error with system copies is to first completely install a database (including restart and 

loading the system tables) and only then import a backup. This often leads to confusion when it then 

turns out that it is no longer an "empty DB". 

The user chose 'Create and start instance' instead of 'Create instance for recovery' in the DBMGUI. 

The individual steps can be viewed in dbm.prt. We can see that db_activate was carried out, which 

represents the first restart of a DB, and that only afterwards a backup was imported. 

The system's reaction to this error is somewhat different than in earlier versions (<= 7.3). The system no 

longer issues return code –8003 „Log and Data must be compatible“ because the database is 

immediately transferred to the OFFLINE operational state and the DBMGUI no longer receives a 

message about the exact cause of the error. This ensures that the memory areas can be completely 

cleared. 

 

KnlMsg reports that the cause of the shutdown here again was LogAndDataIncompatible, albeit without 

the familiar return code. 

It is also noted that the DBIdentifiers of the data and log volumes do not match. 

 

 

 



 106 

After a data page was read from a data volume, checksum 618008976 was calculated. Before writing the 

block, checksum 618000000 was calculated and written to the block. Apparently the block is not situated 

correctly on the disk. 

This read I/O is repeated twice. If the error occurs every time, the database assumes that the block is 

defective. This is a block for an index (secondary key tree). The index is marked as BAD.  

 

Check the I/O system. If the damage to the I/O system can be repaired, you can delete the index and 

then regenerate it.  

Under 'Recovery -> Index‘ , the DBMGUI displays the indexes marked as BAD. You can select the 

index and recreate it. 

 

Regardless of whether or not you are able to identify errors in the I/O system, it is a good idea to run a 

CHECK DATA in such a case. 



 107 

Corrupted indexes (different example) can directly be recreated by using transaction db50. Mark the 

corrupted index and choose Restore Index. 

 

Attention: Up to version 7.7.4 during index creation the corresponding table is locked for write 

transactions. 

 



 108 

In this case, too, a block was read whose checksum did not match with the calculated value. According 

to the ROOTS view, this tree belongs to the TEST table.  

In such a case, check the table with the CHECK TABLE EXTENDED statement (default as of 7.6.01). 

With the option EXTENDED, the sequence of the primary keys is checked on all B* tree levels.    

If CHECK TABLE does not return any errors, the table is intact. Note that in disk mirroring, depending on 

the disk used for the I/O, a correct block and then an incorrect block may be returned. 

If CHECK TABLE continues to return the error, you have the following options: 

 Restore the database 

 Delete the tables and load the data from a sister system. This can lead to data loss. When tables are 

deleted, blocks that are no longer accessible remain occupied. In the ADMIN operational state, these 

blocks are transferred to free space administration with a CHECK DATA WITH UPDATE.  

 Download the table without reading the records of the defective blocks, delete the table and load the 

downloaded records. The table data can be read in primary key sequence. The primary key values of 

the records in the defective block are not specified in the selection. This method is only possible if no 

index page of the B* tree has been affected. Data loss occurs.  



 109 

Diagnosis files only have to be explicitly saved if they are not automatically copied to the 

DIAGHISTORY. 

 

Settings for the collection of historical crash information can be done via the parameters 

DiagnoseHistoryPath (DIAG_HISTORY_PATH) and DiagnoseHistoryCount (DIAG_HISTORY_NUM).  



 110 

MaxDB system errors are "mapped" to the general error -602 in the WebAS System. So this error 

number does not tell you much. 

If the database is still in the ONLINE operational state or has restarted it following a crash, the 

analysis can be continued with transaction db50. 

If restarting the database is no longer possible, other measures are required.  

 



 111 

A short dump with error -602 'BD Bad Data Page‘ occurred during execution of the ABAP report 

ZZ_SEL_9026. 

The short dump thus provides more detailed information about the error than the system log and returns 

the corresponding text from the database. 

 



 112 

In the initial menu for transaction db50, you can find the text that corresponds to a particular number 

via Utilities -> Determine error text. The text for error -602, however, is not terribly helpful as it is 

too general. 

Utilities-> Error Codes  provides information about (system) error numbers as well as their texts by 

displaying the Messages table. 

 

IIn the present example, KnlMsg/knldiag must be utilized for further analysis. 

 



 113 

To display the messages of the database system (KnlMsg/knldiag), choose Problem Analysis-> 

Messages.  

The error 'Bad Data Page‘ with error number -9026 is logged. 

The root page of the affected object 1415751 is also recorded. 

The position of the object is also logged. The defective object is located in Data Volume Number 2 at 

position 22177. 

For a more precise analysis as to what is wrong with this object, the kernel trace (Vtrace) can be useful. 



 114 

Using db50, a Vtrace has been created. 

The root page of the affected object 141575, the volume ( DevNo 2)  and the position in the volume 

(22177)  are logged. 

In addition, an important section of the affected page is logged in the Vtrace which allows you to identify 

the cause of error -9026.  

Each page has one so-called header and one trailer entry, consisting of 8 bytes each. Both entries are 

checked when the page is accessed.  

Header entry: Page: 00 15 9A 47 01 0D 02 00 

Trailer entry: Page: 00 00 00 00 02 0D 02 00 

If inconsistencies appear when the header and trailer are compared, the 'Bad data page' error is sent to 

the application. 

In this example we see that the first 5 bytes in the trailer differ from the header. 

If the affected object is a database table, the database must be restored.  

 



 115 

If the affected object is an index, error -9026 could be remedied by simply deleting and recreating the 

index; the cause of the problem, however, would not be solved. 

The hardware must be examined in any event as such cases (-9026) can be due to hardware errors. 



 116 

Report zz_ins_9028 terminated with a short dump.  

The cause of the error, -602 'BD Bad File‘, can be seen in the short dump. 

 



 117 

The current example has the error "-9028 Bad File“: access to the table has been blocked because a 

serious error (e.g. -9026) occurred. 

The root page number is recorded in KnlMsg/knldiag. You can find out the table with the root page 

number. 



 118 

Until version 7.7 you will find out which database object is affected by accessing the view ROOTS. 

We have already seen how commands can be sent interactively to the database using the SQL Studio. 

The SQL Studio can be started directly from transaction db50.  

The ROOTS table contains the root page number, the object type and the name of the database object 

for all database objects. 

As of version 7.8 the following command can be used to determine the database object: 

SELECT t.tablename, f.* FROM files f, tables t 

WHERE (f.primaryfileid = t.tableid OR f.fileid = t.tableid)  

  AND f.root = 911813  

 



 119 



 120 

In the present example, we know that table zztele_bad has caused a problem; a consistency check is 

triggered. 

A Check Table is executed on the table.  

Check Table checks the tree structure of the B* tree, header-trailer and so on. 

If no inconsistencies are found, the BAD flag is retracted and access to the table is enabled. 

This can happen if, for example, a Raid system reports an error but then corrects it immediately. Then 

the table is consistent, but has nevertheless been set to BAD. 



 121 

The 'Check Table' executed without problems and reported no errors. 

The program that had terminated with -9028 or -602 System Error can now be restarted. 

 



 122 

The tool x_diagnose allows you to access log pages and data pages in the database directly. With 

x_diagnose, you can can export configuration or restart information from the pages.  

If necessary, you can extract an entire table tree. 

x_diagnose is also used to evaluate knldumps. Cache contents, converter information, lock list entries, 

etc., can be analyzed at a later time. 

Because improper use of the tool can be dangerous, x_diagnose should only be used by development. 

In exceptional cases, pages can be repaired directly using an editing function. 

 

Depending on the call of x_diagnose (with or without user/password combination for the database 

administrator) different menus were offered.  

 



 123 

The following pages show how to extract a data page with Diagnose. 

First you choose TYPEBUF. 

Then you enter the volume name. 

 

The following slides show the x_diagnose tool of version 7.5; the menus are still identical in 7.7. 



 124 



 125 

Using the SCAN menu, you can then specify what information you desire. 

 



 126 

By specifying a block address  - taken, for example, from KnlMsg (knldiag) - you come to the desired 

page. 



 127 



 128 

You want to check the restart record. 

You can access the restart record in various ways. One way is to choose KERNEL/DIAGNOSE, which 

brings you to the menus displayed here. 



 129 

The last Savepoint was written on 21.09.2004. 

The database is in an inconsistent state (rstIsConsist: false). 

 



 130 



 131 

You access Loginfo Page via the same menu (GET LOG INFO). 

The DBIdent, among other things, can be determined here. 



 132 


