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In the basic configuration, MaxDB writes all data changes to the log area. The log area consists of 1 to 32 log 

volumes.  

The log area is overwritten in cycles. Before it can be overwritten, an area must be backed up. This does not apply 

to open transactions as the undo log entries for changes are recorded in the data area. At least one savepoint has 

to have taken place before the log entries can be overwritten.  

In systems in which the database has to ensure that data is persistent, the log volumes must be mirrored. This 

mirroring can be done by MaxDB. If the parameter UseMirroredLog (LOG_MIRRORED) is set to NO, the log must 

be completely mirrored with operating system functions or by the hardware (RAID 1). 

 If there is no copy of the log, disk error results in loss of data. 

 

For security and performance reasons, RAID 5 is not recommended. Striping the disks for the log volumes is only 

advisable if the disk system works with a large cache and the log volumes have been mirrored. The disk system 

cache should be large enough that the writing of log pages does not have to wait for physical disk I/Os. 

The parameter MaxLogVolumes (MAXARCHIVELOGS) indicates the maximum number of log volumes. The log 

areas can be expanded up to this number in online mode. 

 

If the log area is mirrored by the database, the failure of a log volume causes an emergency shutdown. A new disk 

is then needed. The new log volume can be integrated in the ADMIN state.   

From version 7.4, the log volume can no longer be integrated in the ONLINE state. 
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The log is divided into fixed-length segments.  

This segmentation does not represent a physical division of the log. 

Log segments are backup units. They specify the size AutoLogBackupSize of the files in which the log pages are 

backed up. The database parameter AutoLogBackupSize (LOG_SEGMENT_SIZE) indicates the size of a log 

segment in log pages.  

If the size 0 is entered for the kernel parameter , the database manager automatically calculates 1/3 of the of the 

total log area.  If the log is expanded online, this does not change the size of the log segments.  

Log segments are NOT closed by a savepoint. 

Interactive log backup backs up all completed segments (segment-by-segment) and the log pages of the segment 

that is not set complete.  So there can be backup files that are smaller than AutoLogBackupSize.    

The segment size is no more than half of the log area. 

SAP recommends saving log backups in backup files in a file system. These backup files can then be transferred 

to a backup tape with the Database Manager command archive_stage. External backup tools are supported. 
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The database kernel can create the log backup automatically.  

You activate automatic log backup with the dbmcli command autolog_on. 

The log backup is automatically created asynchronously upon completion of a segment. 

A segment is completed when the following inequality is fulfilled: 

 Logpno of write pos – Last Logpno of last Segment > Segmentsize 

The log backup is created using two server tasks: One server task reads the log pages from the log area and the 

other writes the log pages to the backup files. 

As of MaxDB version 7.6.02 also a time interval may be set to launch the automatic log backup along this interval.  

 

In versions smaller than 7.7.03 the parameter AutoLogBackupSize had the name LOG_SEGMENT_SIZE. 
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The log can be overwritten automatically without log backups. Use the DBM command „db_execute SET LOG 

AUTO OVERWRITE ON“ to set this status. 

The behavior of the database corresponds to the log mode DEMO in older versions. From version 7.4.3, this 

behavior can be configured online. 

Log backups are not possible after activating automatic overwrite. The backup history is then interrupted; this is 

indicated in the backup history by the identifier HISTLOST (file dbm.knl).  

The backup history starts again when you deactivate automatic overwrite without log backup using the command 

„db_execute SET LOG AUTO OVERWRITE OFF“ and create a complete data backup in the ADMIN or ONLINE 

state. Remember to reactivate automatic log backup when this is desired. 

Automatic overwrite of the log area without log backups is NOT suitable for production operation. As there 

is no backup history for the subsequent changes in the database, it may not be possible to redo transactions in 

case of a recovery.  
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From version 7.4, it is possible to switch off the log writer.  This is now allowed because the database is made 

consistent with each savepoint. A restart is possible without the log because all open transactions can be redone 

on the basis of the last savepoint. 

You switch the log writer off with the DBM command „db_execute SET LOG WRITER OFF“. To do so, start the 

database in the ADMIN state. 

Log backups are not possible after the log writer has been switched off. The backup history is interrupted, as 

indicated by the identifier HISTLOST.  

The backup history restarts when you reactivate the log writer with the DBM command “db_execute SET LOG 

WRITER ON“ in the state ADMIN and create a complete log backup in the ADMIN or ONLINE state.  Remember to 

reactivate automatic log backup when this is desired. 

   

The log writer may not be switched off for production operation. The function serves to accelerate 

administration tasks such as upgrades and big load jobs. 
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As of version 7.8 MaxDB allows the use of multiple log partitions. With parallel writing to the log volumes the 

database prevents bottlenecks during the access to the log queue and additionally wait situations for writes 

into the log volumes. 

Partitions and also volumes of the partitions may have different sizes.  

Normally user tasks of a UKT are assigned to a special log writer and therewith to a partition. This implies that 

for some tasks the state „log full“ might occur even if there is still some free space for a user task of another 

UKT in the corresponding log partition. Perform a backup of the log area if the state „log full“ is shown.  

With the use of the CLEAR LOG command the backup history is interrupted. Make sure that a complete data 

backup is performed. If desired the automatic log backup can be switched on again. 
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Log pages are always 8KB. They are written from the memory to the volume when they are full or when a log entry 

ends a transaction (COMMIT, ROLLBACK). 

The log area is overwritten in cycles. Log pages can only be overwritten when they have been backed up. 

(Exception: SET LOG AUTO OVERWRITE ON). 

In the header of the log there are two pages that are not cyclically overwritten.  

The first page contains information from the I/O manager, for example the volume number and the numbers of the 

predecessor and successor volumes, if available.  

Positions are administered on the info page. These include: 

 the current write position, 

 the position to which overwriting can proceed, 

 the position that has not yet been backed up, 

 the number of the last log backup. 

The info page is written to the volume with each savepoint and, as a precaution, every 500 log pages. 

If the current write position reaches the page up to which may be overwritten, the log is full. In this case, the 

database allows no further write transactions. Clients can still log on, however, as, from version 7.4, a connect is 

not written in the log. 

The reserve pages cannot be filled with normal log entries. Following a log full status, at the next successful restart 

the first unused page is filled with a savepoint. 

Each partition keeps its management information separately. 
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When the log has reached its capacity, creating a log backup is the only way to continue working in online mode. A 

log backup can be created in the ADMIN or ONLINE state. A log backup can also be created by activating 

automatic log backup. 

If the database has the Log Full status, this is not reset by an expansion of the log area. The current write position 

is merely moved sequentially. It is not moved from the middle of a log volume to the beginning of the subsequent 

log volume.  

If the log area is expanded through the addition of a new log volume, the new volume is only written when the 

current write position comes out of the last page of the predecessor volume.  

When the Log Full status occurs, the database kernel writes a savepoint. Log entries can only be overwritten if 

they have been backed up and the position of the last savepoint in still in the log area (Exception: SET LOG AUTO 

OVERWRITE ON).   

 

Log full state may occur for each partition. Some user tasks may be in a waiting state because of a filled log 

volume of their partition while other user tasks working with another partition can still perform changing operations. 

The DBM extends the log area by one volume at a time. If you want to use multiple partitions specify the new 

volumes individually with their corresponding partition: 

 db_addvolume LOG DISKL001_2 F 18750 PARTITION 1 

 db_addvolume LOG DISKL002_2 F 18750 PARTITION 2 
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MaxDB administers redo and undo logs separately. 

In the present example, user session 2 is working in transaction 33. It is updating a record in the table "tab1".  

Transaction 33 has a link to an undo log file. The user enters the field values that were valid before the update into 

the undo log file with the action update and the primary key of the record. Each transaction uses its own undo log 

file. This prevents collisions from taking place while accessing undo log files. 

The user copies the new field values together with the action and the primary key of the record into log queue.  

Undo log entries enable you to roll back a transaction.  

The redo log entries enable the complete recovery of data following a crash or disk errors. 

 



 13 

In the present case, the transaction is closed with a commit.  

 

The user task enters the commit in the log queue and activates the log writer. 

The log writer reads all pages that contain entries of the transaction and were not yet written from the log queue  

and writes them to the log volume.   

Furthermore a link to the undo log file is written into the history file. 

 

As of version 7.6, Garbage Collectors regularly check the history file every few seconds. They delete the undo log 

files found there. Thus the user task is disburdened by the delete operation of the undo log entries. The database 

can then confirm the Commit to the application more quickly.  
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In the present case, the transaction is closed with  a rollback. 

 

In a rollback, the user  task first retracts all the changes to the table data that are listed in the undo log file.  

The user task enters the rollback in the log queue and activates the log writer.  

The log writer reads all pages that contain entries of the transaction and were not yet written from the log queue 

and writes them to the log volume.   

Furthermore a link to the undo log file is written into the history file. 

As of version 7.6, Garbage Collectors regularly check the history file every few seconds. They delete the undo log 

files found there. Thus the user task is disburdened by the delete operation of the undo log entries. The database 

can then confirm the Rollback to the application more quickly.  

 



 15 

Undo log files consist of one or more permanent data pages. A savepoint handles them just like data pages with 

table and index information; in other words, they are written to the data volumes.   

History administration notes the first page of each undo log file in the history file. The first page of the history file is 

recorded in the restart page at the end of the savepoint. So a restart can start at the last savepoint and find the 

actions of all open transactions. 

With a savepoint, the database writes a status in the volumes that can be reassumed without use of the log. 

If the savepoint is created for a data backup, this data backup can be imported into another instance as a system 

copy. The data backup also contains the undo log files for open transactions.  

A restart of the system copy works even though no corresponding logs have been provided. In this case, the 

restart undoes all transactions that were open at the time of the savepoint. The requisite information is available in 

the form of the undo log files. 

Before starting a system built from a system copy you can also import log backups. 
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As of version 7.6, MaxDB supports the use of multiple log queues. The database parameter LogQueues 

(LOG_QUEUE_COUNT) determines the number of log queues and the parameter LogQueueSize determines the 

size of a single log queue in pages. 

In the standard, the value for LogQueues is equivalent to the value for MaxCPUs (MAXCPU). Each UKT with user 

tasks writes to its own log queue. This prevents collisions at the log queues.  

The database still works with a single logwriter, which imports the log pages from the log queues and writes them 

to the log area.  
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In this example the log queue has a size of 3 pages. User tasks only write the redo log entries into the log 

queue, but not directly to the log volume. 

Users 1 and 2 log on to the database. Because only redo log entries are written in the log queue, the connect 

does not need to be written in the log.  

In version 7.3, the connect was also written in the log. As a consequence it was not possible to log on to the 

database in the Log Full status.  

As of version 7.4, logon  is possible even in status Log Full or Database Full. 

User 1 executes an UPDATE statement in the database. An update changes data in the database, so a redo 

log entry is made for this statement in the log queue marked with ID T1.0 (transaction 1, first command). 

User 2 then executes an UPDATE statement, too. The entry in the log queue gets the ID T2.0. 
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The INSERT executed by User 1 creates a redo log entry that exceeds the remainder of the first page of the 

log queue. Thus the first part of the redo log entry is written in the first page of the log queue page. The 

second part is written in the next log queue page. The log writer is instructed to copy the completed first log 

page to the log volume. 

An I/O sequence is assigned for each write I/O in the log volume. This I/O sequence serves to synchronize 

the parallel restore log  or restart. When the first log page is written, it is assigned the I/O sequence 0. 

 

User 1 ends the transaction with a commit. The transaction can only be confirmed as completed and ready 

for application when the commit is in the log volume.  The log writer writes the incompletely filled second log 

page to the log volume and assigns a new I/O sequence.  

 

User 2 issues a DELETE (in transaction 2) which adds the redo log entry for a delete to the second log page 

and fills it completely. The log writer now writes the complete page to the log volume. User 2 can continue to 

work and does not have to wait until the page is in the volume. 

 

 

If multiple log queues are used, the logwriter will not overwrite blocks in the log. New entries always will be 

put to the next block. This leads to a certain higher log consumption. 

If multiple log partitions are used the I/O sequence numbers may be distributed to different log volumes. 

Redo Log recomposes the order of sequences in a consecutive manner when reading from the log partitions. 
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User 1 selects only data for the duration of the transaction. The transaction 3 makes no changes. No log 

entries are written for the selects and the subsequent commit. 

User 2 ends the transaction with a rollback. When the transaction is rolled back, the undo log entries are read 

from the undo log files in the data area. When all undo log entries have been rolled back, the redo log entry 

for the rollback is written in the log queue. The user waits until this entry is in the log volume. 

User 1 makes changes and completely fills the log queue. Further entries are now written in the first page of 

the log queue. With the commit, this page is also copied to the log volume. As the log area is generally larger 

than the log queue, writing can continue there. 
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When the log writer is busy copying log pages from the log queue to the log volume, multiple commit and 

rollback entries can accumulate in the current log page. These can then be copied to the log volume with a 

single I/O. This effect is known as a group commit. 

Group commits can be aided by setting the parameters MaxLogwriterDelay (_DELAY_LOGWRITER). In the 

benchmark environment, this led to minor improvements in throughput. In production operation, the standard 

parameter settings should be used.  

 

If the log writer is very busy, log pages that have not yet been copied to the log volume by the log writer can 

gather in the queue.  In this case, the log writer combines several pages into a larger block and copies them 

to the log volume with a single I/O. 
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If the log writer cannot copy the log pages in the log queue fast enough, the log queue can fill up with pages 

that have not yet been written. This effect is known as log queue overflow. 

If this happens, all users who want to perform changes have to wait. Thus this situation can be very critical for 

performance. 

In most cases, log queue overflows occur due to slow write I/Os for the log volumes. Mostly you will get less 

overflows if the I/O is accelerated. In high workload situations the configuration of additional log partitions 

may reduce the number of overflows. Sometimes it might be sufficient to enlarge the log queue (by changing 

the parameter LogQueueSize). 

 

The DBM command "info log" displays the number of log queue overflows since the last restart of the 

instance.  
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The copying of the log queue to the log volume is triggered by: 

 A full log queue page 

The user transaction can begin to write the subsequent log page as soon as the entry is in the log queue. It 

does not have to wait until the log writer has written the entry in the log queue to the log volume. 

 A commit or rollback 

The transaction has to wait until all corresponding entries have been written to the log volume. 

 A savepoint 

User transactions can continue working. They do not have to wait until the savepoint entry has been 

written to the log volume. 



 23 

In a new installation of the database, the log volumes are formatted. The DBM command db_activate without 

option RECOVER launches the first restart of the database. A savepoint is also written. Thereafter, the database is 

ready for use and all database components can connect to the database.  

All changes by data definition and data manipulation commands are written in the log. 
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Creation and deletion of database objects: 

If a new object is created in the database, the CREATE statement is written to the log volume as a redo log entry. 

Moreover, the kernel writes an undo log entry to the undo log file of the corresponding transaction.  

If an index is created in the database, this statement, too, is written to the log. The creation of an index also 

triggers a savepoint. 

tIf an object is dropped, his statement, too, is written to the log. 

The statements are not written to the log in plain text, but rather in the form of stack code, which is generated by 

the SQL manager. 
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If new records are inserted into a table, the entire new record is written in the log. 
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If existing records are changed in the database, the key of the record to be changed is written in the log  together 

with the changed field values. For variable-length fields, the length byte of the field is also stored. 
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For qualified deletion of records, only the primary keys of and the table ID of the records to be deleted are written 

in the log. The other field values are not needed for a redo. 
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For unqualified deletion, the records to be deleted are not written in the log. 

The deletion of all the records in a table is handled like a DROP Table, that is, a ‘DROP TABLE’ statement, which 

triggers the deletion of the records, is written in the log. But the deletion of the data records does not occur 

physically; rather, the B* tree of the table is renamed. That way the data can be restored quickly in case of a 

rollback. 

After the commit, the tree is deleted recursively. This action executes a server task in the background. The user 

does not have to wait until the B* tree is deleted. 

The catalog information of the table is retained in a deletion. 

 

Even for unqualified deletion of the table data, the JDBC interface expects the number of deleted records in the 

return.  So MaxDB version 7.5 counts the number of records. If TRUNCATE is used, the database kernel does not 

determine the number of records to be deleted.  

As of Version 7.6, unqualified delete determines the number of records directly from the file directory and therefore 

does not need to count. 
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A savepoint speeds up database restarts. Savepoints are written asynchronously. 

Savepoints are executed at regular time intervals, but they are also triggered by certain actions (for example 

CREATE INDEX) in the database. In the standard, a savepoint is started every 10 minutes. You can configure the 

time interval between savepoints with the parameter MaxSavepointTimeInterval. With this parameter, you can 

specify the maximum number of seconds that must elapse after a savepoint before a new savepoint is started. The 

parameter only affects time-controlled savepoints. Time-controlled savepoints are not executed if no changes are 

made in the database. 

CAUTION: if you increase the value inof MaxSavepointTimeInterval, you do reduce the number of savepoints and 

thus the workload, but this can also slow down the restart after a crash. 

Too frequent writing of savepoints causes the contents of the caches to be written too often with too little data, 

which hurts performance (I/O wait). 

A savepoint is also written when a "CREATE INDEX" statement is sent by a transaction. 

The savepoint triggers the writing of the log queue, data cache and converter cache to the volumes. 

 

In versions lower than 7.7.03 the parameter MaxSavepointTimeInterval was called _RESTART_TIME. 
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When is a savepoint requested? 

 Savepoints are time-controlled. With the standard setting, a savepoint is started every 10 minutes. 

 Data backups first start a savepoint and then back up all data covered by the savepoint. Changes to data during 

the backup are not included in the backup. 

 When the database is shut down, the database kernel waits until a savepoint is carried out and all changed 

pages in the cache have been written to the volumes.   

 Restart is ended with a savepoint.  

 A savepoint is started at the end of a CREATE INDEX. 

 You can start a savepoint manually with the SQL statement FORCE SAVEPOINT.  

 When the kernel detects that the data area or the log is filling up, it starts a savepoint. This minimizes the restart 

time if the database is stopped with a full data or log area.  
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Recovery at restart 

The restart implicitly redoes or undoes the transactions; to do this, it goes back to the last savepoint.  

All transactions that were not complete at the time of the last savepoint are subject to a redo or undo. Completed 

transactions that were started after the last savepoint are also subject to a redo. 

Example (see slide): 

 Transactions 1 and 5 are not relevant for the restart. T1 is completely in the data area. T5 is not in the data area 

and was reset by a rollback. 

 Transactions 2, 3 and 4 were not complete at the time of the last savepoint.  

 T2 and T3 are rolled back starting at the savepoint. 

The changes of the transactions are read from the undo log files  UNDO . 

 T4 is redone starting at the savepoint. The changes are read from the log area  REDO. 

 Transaction T6 has to be completely redone. The changes are found in the redo log entries in the log area  

REDO.  
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A savepoint is not a point in time, but covers a span of time. It is divided into three phases. 

1. Phase: 

 In this phase, all data pages that have been marked as changed in the cache since the last savepoint and have 
not yet been written to the data volumes are now written to the data volumes. 

 All data pages that are changed in this phase are marked. 

2. Phase (Prepare): 

 The second phase is known as the prepare phase. At the beginning of the prepare phase, 
 the sequence values that are relevant for the savepoint are determined, 
 B* tree operations are blocked, 
 the transaction regions are reserved, 
 an entry is written in the log, 
 and a page chain (open trans file) with references to the open transactions is generated. 

 When the log entry for the savepoint has been written and the open trans file created, 
 all reserved regions are released and 
 all waiting tasks are woken up.  

 The duration of the prepare phase is generally in the millisecond range. 

3. Phase: 

 In the third phase, all the data pages that changed in the first phase are written to the data volumes. 

 After that, the converter is written in parallel to the data volumes. 

 Then the log info page is written to the log and the restart record  is written to a data volume. Usually it is written 
to the second position  of the  first data volume; after a drop of this volume the position has to be changed. The 
savepoint is not finished  until the restart record has been successfully written. 

 Following completion of the savepoint, the converter version (also savepoint version) is counted up by 1. 
Changes to data pages in the third phase can now be written to the data volumes using the new converter 
version. 
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The restart record contains the current log write position at the starting time of the corresponding savepoint. 

The restart reads the log entries starting at this point.  

The log reader copies the redo log entries for each transaction to a redo log file in the data area.  

If the log reader reads a commit for a transaction, a redo task processes the redo log files and carries out the 

corresponding changes in the data area. Changes may be carried out that were already written in the data 

area by the savepoint. 

If the log reader reads a rollback for a transaction or reads no end for a transaction, the redo task processes 

the undo log file of the transaction. The undo log file contains all undo log entries of changes that were written 

by the savepoint. The redo task redoes the changes made in online mode.  

The log reader and redo tasks are listed as server tasks in the task overview. 

The savepoint entry in the log is not needed for the redo operation. It is used for security checks. 
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Restore Log and restart create a redo log file in the data area for each transaction. 

Only those redo log entries from the log backups that are no longer in the log volumes are copied. 

A transaction is not redone until the redo log file has been completely generated. 

 

Restore Log without until specification does not write to the log volume. Thus it is not important to back up 

the log area before the Restore.  

With Restore Log with until specification, after all redo log entries have been processed, a savepoint is 

written and the log is deleted from the until position onwards. This interrupts the log history. Therefore, in a 

production system, 

 the log should be backed up before the Restore Log Until and 

 a data backup should be generated once the Restore is completed. 

 

Savepoints are written during the Restore Log. With these savepoints, the generated log files are also written 

to the log volumes. Following crashes, the last savepoint is the restart position. When you restart, start the 

Restore with the last log backup that was read.  

The DBM command db_restartinfo in the ADMIN state displays the log page on which the Restore Log starts.  
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CREATE INDEX statements are not repeated in the case of a redo. 

That can speed up RESTORE LOG considerably. 

The indexes are recreated with RECREATE INDEX when the database is in the warm state. 

Version <= 7.7: When the parameter UseAutomaticBadIndexRecreation 

(AUTO_RECREATE_BAD_INDEXES) is set to YES, the corresponding indexes are automatically generated 

at the end of the restart/redo. Users can log on to the database when the indexes have been created.  

Version >= 7.8: The database kernel sends an event to the DBM when it detects a corrupted index during 

online operation or at the end of the restart. The DBM treats the event according to the setting of 

auto_recreate_index: 

 UNIQUE: Recreate Unique Indexes immediately 

 ALL: Recreate all Bad Indexes immediately 

 OFF: Do not automatically recreate Bad Indexes 
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Whenever possible, MaxDB redoes/undoes log entries in parallel. The lock mechanism cannot be used for 

synchronization as is possible in the online operational state. Transactions may not "overtake" each other; 

that is, they must be processed in the same order as in the online operational state. 

The log I/O sequence of the transaction closures (commit/rollback) is used for synchronization when redoing 

or undoing transactions.  

 

The log reader creates an entry in the redo list when a redo log file is fully generated. This entry contains the 

transaction ID and the I/O sequence of the transaction closure.  

Multiple redo tasks then process the redo log files in parallel.  

The redo task only redoes a log entry once all transaction closures with a smaller I/O sequence numbers 

have been processed.  
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In this example, the rollback transaction does not have to be rolled back as it was not written to the data area 

by a savepoint in the online operational state. The corresponding redo log file is deleted immediately 

afterwards. The entry does not have to be added to the redo list.  

Waiting transactions can continue to work. Another form of parallel processing now takes place in 

comparison to the parallel queue in the preceding slide. 

 

The locking mechanism used here is different than ordinary locking. Locks are administered via the redo list. 

The locking mechanism in the online operational state cannot, in this case, guarantee that the transaction will 

not overtake each other. 

There is no restart at the end of the Restore as the transactions are already redone during the process. The 

database can be switched to the online operational state directly. 
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The log and data of an instance must always match. The data of one instance may not, for example, be 

mixed with the log of another instance during log recovery.  

To avoid the occurrence of incompatibility between log and data, the database kernel writes the DBIdent in 

 the restart record, which is normally located in the second block of the first data volume  

 the log info page, which is located in the second block of the first log volume; 

 every data backup (Save Data / Save Pages); and 

 every log backup. 

 

The DBIdent contains the names of the database server and the database instance as well as a time stamp 

indicating when the backup history began. This time stamp is set with until specification, for example  at the 

first restart and at the end of a Restore Log. 

The names of the database server and the instance do not necessarily correspond to the current server and 

instance names. Database instances can be renamed without the DBIdent being changed (see OSS note 

604680). Instances can change database servers in the HA cluster. 
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Homogeneous system copy is carried out by backing up a source database/instance and then restoring this 

backup on the target database/instance. 

Homogeneous system copies are allowed if the processor types of the source and target servers are the 

same. For more information, see OSS note 129352. 

 

Data backups contain the undo log entries of all open transactions. You can import a data backup into 

another instance per Restore and execute a restart. The restart ensures the consistency of the database by 

undoing the open transactions that existed at the time of backup. 

Note that in this case the restart only works if the DBIdent in the log matches the DBIdent in the data area or 

if the log was initialized with "db_activate RECOVER“.  The "db_activate RECOVER“ statement does not fill 

the DBIdent. The restart is what sets the DBIdent in the data and log areas.  

Restore Data enters the original DBIdent in the data area. This makes it possible to import log entries and log 

backups from the source system. The Restore Log process can be interrupted and resumed. In this case, the 

dbmcli command recover_ignore executes the restart and sets the new DBIdent. 

If log entries from the source instance are redone in the target instance, the database version of both 

instances must be the same at build level.  

As of  version 7.5, a log backup that was created online also contains the last incompletely-filled log page, 

that is, all redo log entries that were generated since the last log backup. 

Caution: in older versions, this log page was only backed up once it was completely full. In older versions, if 

you require a particular starting point, set the source instance to the ADMIN operational state to create the 

last log backup for the system copy.  This can be avoided by performing some "dummy" updates on a table. 

The dummy updates would fill the last log page. 
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MaxDB also offers the possibility of operating so-called standby databases. A standby instance is supplied 

with a data backup from an original instance.  Subsequently the log backups from the original instance are 

restore into the standby instance. 

 

f in case the standby instance shall be started the log volumes of the original instance are still available, you 

can copy these log volumes to the log volumes of the standby instance. Then continue with recover_start. 

Once the redo log entries can be read from the copied log volumes, the log reader no longer reads from the 

log backups. After all logs are restored the database is automatically set to the ONLINE operational state.  

The DBIdent is retained. The log backup history is not interrupted.  

Caution: The statement"db_activate RECOVER“ should not be used for a normal recovery. "db_activate 

RECOVER“ is used in case of the creation of a new instance. For a normal recovery, "db_activate 

RECOVER" would unnecessarily prolong the recovery time. Additionally the risk of losing  the current log 

from the log area is high. 
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As of version 7.5, MaxDB supports hot standby environments.   

A production instance (master instance) works with its data area and writes changes ofdata to the log 
area.  

When the standby instance is initialized, the data area of the standby instance is supplied with a snapshot 
of the data of the current master instance. Both instances share a common log area. In standby mode, the 
standby instance reads from the common log area and redoes any log entries done by the master 
instance. The standby instance only has read authorization for the log area. The master instance informs 
the standby instance at short intervals how far the standby instance can read from the log area.  

If the master instance fails, the cluster agent executes a takeover by the standby instance.  It sets the 
standby instance to the online operational state. The library “librtehss“ enables the standby instance to 
write in the log from now on. The takeover by the standby instance takes only a few seconds; only a few 
redo log entries need to be redone. All necessary resources (for example caches) are already in operation 
and do not need to be requested when the takeover occurs. The data pages that were changed during the 
recovery are already in the cache.  

Prerequisites for hot standby: 

 Use of a storage system that supports I/O consistent snapshots or Split Mirror. SAP OSS note 371247 
describeds this requirement. 

 The storage system allows one instance to write in the log and other instances to read from it. ”librtehss”, 
which is supplied by the manufacturer of the storage system, can switch the read/write mode. 

 The library “librtehss“ supplies the standby instance with the data from the master instance when the 
former is initialized. 

 A cluster agent monitors the production database instance and starts a takeover if it fails. 

MaxDB supports multiple instances. 

Up to know Hot Standby has been implemented by 

 IBM for IBM ESS, DS8000 and SVC. For further information see 
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100442. 

 EMC for Symmetrix with Timefinder Clone 

 HP for  HP Enterprise Storage (http://h20338.www2.hp.com/hpux11i/us/en/solutions/serviceguard-
extension-sap.html) 
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