Heike Gursch

Christiane Hienger

THE BEST-RUN BUSINESSES RUN SAP™

Overview

Transactions

Locking objects

Locking types

Locking conflict

Configuration

Lock escalations

Monitoring the locking administration
Phenomena

Isolation Level

Implementation aspects

Basics |

What is a transaction?
Sequence of SQL commands
Data(base) modifications are an atomic unit

Commit —— O0.K. accept and fix changes

Rollback — Undo changes

A transaction is a sequence of one or more processing steps. It refers to database objects
such as tables, views, joins and so forth.

Here, the following properties must be fulfilled:
m Indivisibility
A transaction is atomic or, in other words, it will either be completely (all of its operations) executed or not
at all ("All or nothing principle™). Example: there are no employees without salary.
m Consistency
The defined integrity conditions remain fulfilled. For example, each employee has a personnel number.
m [solation
The operations within the transaction are isolated from the operations of other transactions.
m Permanency
Changes that transactions have made to objects must be persistent following a system crash, for example.

ACID condition= Atomic, Consistent, Isolation, Durable.

Basics |l

Concurrent (parallel) transactions

Concurrent access to the same database object

Synchronization logic is required!

2009 f MaxDB 7 8 Internals — L ocking/Page 4

If several transactions want to access the same objects concurrently, these accesses must
be synchronized with the help of lock management.

Since the database system allows concurrent transactions to access the same database
objects, locks are required to isolate individual transactions.

Locking an object means that other transactions are not able to use it in certain ways.

The more locks that are set, and the longer these stay in place, the less concurrency is
possible in database operation.

All locks are released by the end of the transaction at the latest.

Basics 1l

Locking objects are

Table rows (ROW)

Tables (TAB)

Database catalog (SYS)
Activation

Implicit

Explicit

Locking management handles three types of objects:
m Records
m Tables
m Database catalog entries

Requesting locks implicitly
You can choose the lock type by specifying an isolation level when opening the
database session. The database system then requests locks implicitly during processing
of an SQL statement in accordance with the specified isolation level. All changing SQL
statements (such as INSERT, UPDATE, DELETE) always request an exclusive lock.

Requesting locks explicitly
You can use the LOCK statement to explicitly assign locks to a transaction. You can
specify a LOCK option in an SQL statement to lock individual rows in a table. This is
possible in every isolation level. You can use the LOCK option to temporarily change
the isolation level for an SQL statement.

Locking Types

SHARE lock (shared, multiple access)
Alternate transaction may access the object for reading but not for writing purpose

EXCLUSIVE lock (exclusive access)

Alternate transactions may access the object for reading pupose but only without a lock
(dirty read)

OPTIMISTIC lock

A transaction (t1) might change an object if and only if no alternate transaction has
changed this object after it has been read (by t1, setting the optimistic lock)

© SAP 2009 / MaxDB 7 8 Internals — L ocking/Page 6

Read locks (share locks) refer to a row or a table.

m Once a shared lock is assigned to a transaction for a particular data object, concurrent
transactions can access the object but not modify it. Other transactions can set a shared lock, but
not an exclusive lock for this object.

Read locks (share locks) refer to a row or a table.

m Once an exclusive lock is assigned a transaction for a particular database object, other
transactions cannot modify this object. Transactions that check for the presence of exclusive
locks, or that want to set exclusive or shared locks, conflict with the existing exclusive lock of
another transaction. You cannot access the locked object.

Optimistic lock on arow level

m An update operation on a row is only actually performed if this row has not been changed in the
meantime by a concurrent transaction. If the update operation was successful, an exclusive lock is
set for this row. If the update operation was not successful, it should be repeated after reading the
row again with or without an optimistic lock. In isolation level 0, an explicit lock must be specified
for the new read operation. In this way, it can be ensured that the update is done to the current
state and that no modifications made in the meantime are lost.

m |t only makes sense to use an optimistic lock if one of the isolation levels 0, 1 or 10, or 15 has
been assigned. An optimistic row lock must be explicitly requested by specifying a LOCK
statement. A request can conflict with an exclusive lock only.

Locking Types

A transaction holds ...
Can an alternate EXCL | SHARE | EXCL | SHARE EXCL | SHARE
i ?

fransaction .. Table lock Row lock Catalog lock
lock this table EXCLUSIVE
oci fhis table NO | NO NO | NO NO | YES
lock this table SHARE
oci s fable NO |YEs |[No |YEs NO | YES
lock any row of this table
EXCLUSIVE NO NO NO YES
lock an already locked row
EXCLUSIVE NO NO
lock another row
EXCLUSIVE YES YES
lock any row of this table
SHARE NO YES NO YES
lock SHARE
ock a row NO YES
lock another row SHARE

YES YES
change the table definition
in the catalog NO NO NO NO NO NO
read the table definition
from the catalog YES YES YES YES NO YES

© SAP 2009 / MaxDB 7.8 Internals — Locking/Page 7

The above table provides an overview of possible parallel read locks (share locks) and
write locks (exclusive locks).

A lock collision exists in the cases which are marked with "No"; i.e., after having requested
a lock within a transaction, the user must wait for the lock to be released until one of the
above situations or one of the situations that are marked with "Yes" in the matrix occurs.

Additionally, the following applies:

m If no lock has been assigned to a transaction for a data object, then a shared or exclusive lock can be
requested within any transaction, and the lock is immediately assigned to the transaction.

m If a shared lock has been assigned to a transaction T for a data object, and if no lock has been assigned to
any concurrent transaction for this data object, then the transaction T can request an exclusive lock for this
data object and the lock is immediately assigned to this transaction.

m If an exclusive lock has been assigned to a transaction for a data object, then a shared lock can, but need
not be requested for this transaction.

Status of a Lock

Normal

The lock is hold until the end of the transaction. It can, as the case may be, be
released explicitly.

Consistent

During a table scan a previously received row lock is released if in return
another row of the same table gets locked.

Exclusive until end-of-transaction (eot excl)
Alock has been implicitly set during a write order and for consistency reasons
has to be kept until the end of transaction (COMMIT or ROLLBACK).

Temporary

In addition to row locks, a table can be locked SHARE for the duration of a mass
command (e.g. update).

2 2009 / MaxDB 7 8 Internals — Locking/Page &

Configuring Lock Management

DB Kernel Parameters (1)

MaxSQLLocks Max. number of locks
MaxUserTasks Max. number of concurrent users
RequestTimeout Max. waiting time for receiving a

lock (in seconds)
DeadlockDetectionLevel Depth level for detecting deadlock cycles

In versions smaller than 7.7 the parameters had the following names:
MAXLOCKS, MAXUSERTASKS, REQUEST_TIMEOUT und DEADLOCK_DETECTION

2 2009 / MaxDB 7 8 Internals — Locking/Page 9

If a lock request collides with an existing lock:
m the user waits on the existing lock, OR
m an error message is returned for the existing lock.

If the user has to wait (default), he will receive an error message after the lock request has
timed out.

Timeouts are updated every 30 seconds by the Timer Task.

A deadlock occurs when two or more users mutually prevent each other from proceeding.
Deadlocks are recognized down to a certain depth in the database. The users involved in
the deadlock receive an error message. The deadlock is resolved.

Deadlocks that were not recognized by the system are resolved by the timeouts
(transactions will be rolled back).

Lock Escalation

Transfer row locks to a table lock

if around 20% of the lock list entries (MaxSQLLocks) are used by one single transaction
on one table

if the number of row locks per transaction exceeds RowLocksPerTransactionThreshold %
of MaxSQLLocks
Reacting to collisions during escalation

Continue by setting further row locks if other concurrent transactions work on the same
table.

Block execution if the mass command requests more locks than available in lock

A mass command is an SQL statement that affects multiple records.

Example: Update PERSONAL set SALARY (GEHALT) = SALARY* 1.5 where GENDER
(GESCHLECHT) = "female" (weiblich)

Default value of the parameter RowLocksPerTransactionThreshold is 50. The old name
was ROW_ LOCKS PER_TRANSACTION.

10

System Monitoring (Lock Management)

System tables
sysdba.lockstatistics
sysinfo.lockstatistics
sysdba.transactions

Database console
x_cons <DBNAME> sh[ow] act[ive]

the status Vwait shows:
Task is waiting to get an SQL lock

DBACockpit
SQL lock overview and waiting status

© SAP 2009 / MaxDB 7 8 Internals — L ocking/Page 11

11

System Table SYSDBA.Lockstatistics

SESSION internal session id
TRANSCOUNT internal transaction id
PROCESS task id of bound kerneltask
USERNAME name of the user
DATE Start date of database session that holds the lock
TIME Start time of database session that holds the lock
TERMID Terminal-ID des sperrenden Benutzers
REQTIMEOUT seconds to return RequestTimeout
LASTWRITE seconds since last write activity
LOCKMODE lock entry
REQMODE lock request entry
APPLPROCESS process id of the application process (Client)
APPLNODE computer name (client),

where the application runs on
SCHEMANAME name of the table schema
OWNER owner of table
TABLENAME name of table
TABLEID table-ID
ROWIDLENGTH length of locked key
ROWID locked key
ROWIDHEX hexadecimal representation of locked key

© SAP 2009 / MaxDB 7 8 Internals — L ocking/Page 12

The system table LOCKSTATISTICS describes the current lock entries and entries for lock
requests.

Using the system table LOCKSTATISTICS you can determine the following database
information, among other things:

m All locks that are held on a table

m All locks that the current user is holding during his database session (if this is the current user
(DBA user) or database system administrator (SYSDBA user), then all locks are displayed).

Users that belong to other user classes only see the locks held by that one user.

12

System Monitoring (Lock Management)

Views on sysdba.lockstatistics

DOMAIN.LOCKS and DOMAIN.LOCK_HOLDER
show all active locks

DOMAIN.LOCK_REQUESTOR
shows all lock requests

DOMAIN.LOCK_WAITS
shows owners of current lock related to current lock requests

© SAP 2009 / MaxDB 7 8 Internals — L ocking/Page 13

13

System Table SYSDBA.Lockliststatistics

SYSINFO.LOCKSTATISTICS
maximum number of lock entries as defined for locklist
number of currently used entries
average number of used entries
maximum number of used entries
threshold value for lock escalation
number of lock escalations since last restart
number of detected deadlocks since last restart
number of transactions that hold locks
number of transactions that are requesting locks

© SAP 2009 / MaxDB 7 8 Internals — L ocking/Page 14

14

Transaction DBACockpit (DB50)
Exclusive SQL wait situations EV

IH CAQ CHAE HDLH BRI @@
Exkiusive SQL-Wartesituationen

(68

T —
< B sqQ2

[E¥ Eigenschatten @ IEI?II?@ Igl@almalq}:al @
< (] Aktueller Status Exklusive Wartesituationen

Q] i Aldivitat |
ok Uhersiei " | | [Task-ID|Appi-ID|Appi-Server| Spert | Sperrart| Tabellen... | Task-ID [Appl-ID|Appi-Server|Wartet |Sperranforderung [war

D (] Kemel-Threads
- 1 10.31.165... 1 3
< (&3 Vo-Operationen 46 0 0.31.165 {@ tab_s... \DO10L 33 7058 |uw1019 row_exclusive 497

2 Ubersicht
Backup-li0
Kritische Abschnitte
= 3 SQL-Sperren
3 Wartesituationen ||
[E Ubersicht
o Speicherbereiche
& Systemeinstellungen
Transaktionen []
D [Problemanalyse [+]

K| I K1Y

D [SAP DB Werkzeuge

1«1}
__I[4DJ

[«]f

<0l [an)
D |80z (1) (000) Pzl uw1019 | INS

© SAP 2009 / MaxDB 7.8 Internals — Locking/Page 15

Display of the current wait situations

Task 33 waits for a lock, which can then be assigned only once task 46 has provided the
shared table lock.

Exclusive locks prevent other users from accessing the locked entry. These locks can
significantly interfere with the performance of the SAP system and the database system.

Procedure to determine the user who triggered the lock

m The column "Appl.ID" displays the process ID of the work process on the application server "Appl.Server".
You will find the corresponding SAP work process in transaction SM51/SM50 or SM66.

m The corresponding task (here, task 46) can be aborted in the task manager under "Kernel Threads".

15

General Overview DBACockpit (DB50)
Overview SQL Locks Ty

AH QO SCHE DL BE @®
Ubersicht SQL-Sperren

o
_—————————

T o |11 A[910[35] O[0: [a] 1

< (1 Aktueller Status SQL-Sperren/SQL-Sperranforderungen

O
ek Lrere e iidiiisn Task-ID|Appl-ID|Appl-Server |Spemart Sperranforderu...|Status...|Wartezeit auf Sper...| Tabellenname| Zeilen-ID
D] Kemel-Threads

< (&3 Vo-Operationen 33 23114 |uw1019 row_exclusive |write |5000 DO10L ‘ZFBAD
‘g Ubersicht 33 23114 |uw1019 row_exclusive 5000 DO10SINF ‘ZFBAD
Backup-i0 41 1123 |uw1019 row_share SYS%CAT2 |XFF0000
@B Kritische Abschnitte 46 110 10.31.165.40 |tab_share Do10L
< {3 SQL-Sperren =
3 Wartesituationen ||
E Ubersicht
o Speicherbereiche
& Systemeinstellungen
Transaktionen [«]
D (] Problemanalyse [+]
(K70 I (K]0

b] SAP DB Werkzeuge

<[]

0]

|

Dl [D)
D | 802 1) (000) P2l uw1019 [INS 7

© SAP 2009 / MaxDB 7.8 Internals — Locking/Page 16

Display of all active and requested database locks.

Exclusive locks prevent other users from accessing the locked entry. These locks can
significantly interfere with the performance of the SAP system and the database system.

The system displays detailed information about the locks currently set. This display can be
very long in a running SAP system. Therefore, always display the analysis of SQL locks
from the overview of wait situations (exclusive).

Task T33 requests a write lock on a record belonging to the table DO10L.

Task T46 holds a table lock on table DO10L.

16

SYSDBA.Lockstatistics in Database Studio

"Rl)atabase Studio
File' Edit Window Help

1@ |G-
(5L *WESS0- SOLEdRorS | SOL *WBSS0 - Lockhalmink.sdbsql | S0L WESS0 - LockAfeld.sdbsal (I TN T

TEEE
|4 1d1032:WB550 SAPR3 (Auto Commit: On, SQL Mode: Internal, Isolation Level: Read Uncommited)

soL sQL | E Result (1)

| B 7 220 2007-07-30 | 15:17:18 | java@1589559 | 7 7 row_share
|2 162 572 0 ? 220 SAPR3 2007-07-30 15:17:18 java@1589559 7 ? row_excl...

3 162 s7z2 0 ? 220 SAPR3 2007-07-30 15:17:18 java@1589559 7 ? row_excl...
| 4 159 583 0 7 221 SAPR3 2007-07-30 15:16:22 java@d31c91 4915 ? ?

E ? 0 10.16.107.18 | ? ? 0000000000000000 | 00FFFFO0000000001C000000000... | ?
row_excl... ? ? ? 0 10.18.107.18 SAPR3 SAPR3 | ZZTELE 00000000000002... 69 2041616C6DE9I6ECB20202020202... "Aalm,
row_excl... ? ? ? 0 10.18.107.18 SAPR3 SAPR3 | ZZTELE 00000000000002... 69 2041686C66656C6420202020202... "AhlF..
? ? row_ex... ? 0 10.18.107.18 SAPR3 SAPR3 ZZTELE 00000000000002... 69 2041686C66656C6420202020202,.. "AhlF.,

© SAP 2009 / MaxDB 7.8 Internals — Locking/Page 17

17

Special Scenarios

Phenomena
Dirty Read
Non Repeatable Read
Phantom

2009 f MaxDB 7 8 Internals — Locking/Page 18

The isolation level plays an important role in the lock activities of the database system. You
use the isolation level to specify whether locks are requested or released implicitly, and
how.

Your choice of isolation level affects the degree of parallelism of concurrent transactions
and the consistency of the data: the lower the value of the isolation level, the higher the
degree of parallelism, and the lower the degree of guaranteed consistency

If transactions are competing for access to the same data, then different isolation levels
can cause different sorts of inconsistencies. You can find a compromise between
parallelism and consistency, while taking into account the requirements of your database
application.

When concurrent transactions are processed, inconsistent situations can occur. Try and
avoid these situations by configuring the lock behavior and isolation level of the database
system accordingly.

18

Dirty Read

T1 update personal ROLL BACK

set name = 'Meier' |
where pnr '4711" |

and name = 'Jobst'

T2 select *
| from personal
| where pnr = '4711'
PNR NAME
4711 Meier

2009 / MaxDB 7 8 Internals — Locking/Page 19

A row is modified in the course of a transaction T1, and a transaction T2 reads this row
before T1 has been concluded with the COMMIT statement. T1 then executes the
ROLLBACK statements. In this case, T2 read a row that never actually existed.

19

Non Repeatable Read

T1 | select * select *
from personal from personal
where pnr = '4711" where pnr = '4711" _‘
PNR NAME 100 Row not found
4711 Meier
T2
delete
from personal ‘{
where pnr = ' 4711

COMMIT

2 2009 / MaxDB 7 8 Internals — Locking/Page 20

Transaction T1 reads a row. Transaction T2 then modifies or deletes this row, and
completes the action with the commit statement. If T1 then reads the row again, it either
gets the modified row or a message indicating that the row no longer exists.

20

Phantom

™

select *

T2

select *
from personal from personal
where name like 'M%' where name like 'M%'
PNR NAME PNR NAME
4711 Meier 4711 Meier
5200 Miiller 5200 Miiller
6000 Mehnert

insert personal

values

('6000', 'Mehnert')

COMMIT

2009 f MaxDB 7 8 Internals — L ocking/Page 21

Transaction T1 executes an SQL statement S that reads a set of rows (M) fulfilling a
search condition. Transaction T2 then inserts or modifies data, and produces another row
that fulfills this search condition. If T1 then executes the statement S again, the set of rows

that is read differs from the set M.

21

ISOLATION LEVEL 0

Read access

Rows are read without checking for lock collisions

It is not guaranteed that

- a repeated read within the same transaction returns the same result
- rows once read ever will be committed (become persistent)

2 2009 / MaxDB 7 8 Internals — Locking/Page 22

Isolation level 0 does not offer any protection against access anomalies.

If you specify the isolation level 0 (uncommitted), then rows are read without shared locks
being requested implicitly. If a row is then read twice within a transaction, this isolation
level does not guarantee that the row has the same state the second time as the first,
since it could have been changed by a competing transaction between the two reads.

Furthermore, there is no guarantee that the state of a row that was read has already been
recorded in the database using a COMMIT WORK statement.

22

ISOLATION LEVEL 0

T1 update personal

set name = 'Meier'
}7 where pnr = '4711"
= '"Jobst'

and name

ROLLlBACK

T2

© SAP 2009 / MaxDB 7 8 Internals — L ocking/Page 23

select *
from personal
where pnr = '4711"

PNR NAME

4711 Meier

23

ISOLATION LEVEL 0

SAPd

T1 update personal RO LL|BAC K

set name = 'Meier'
where pnr = '4711" |

LOCK ROW EXCL

T2 select * update personal
| from personal set name = 'Baxter
| where pnr = '4711"' where pnr = '4711"'
PNR NAME
4711 Meier

© SAP 2009 / MaxDB 7 8 Internals — L ocking/Page 25

25

ISOLATION LEVEL 1

Read Access

Read persistent (committed) rows. Check for collision happens before reading
In case of a collision a lock request is set. (req row share)

2009 f MaxDB 7 8 Internals — Locking/Page 26

When you retrieve data using an SQL statement, the database system ensures that, at the
time each row is read, no exclusive lock has been assigned to other transactions for the
given row. However, it is impossible to predict whether an SQL statement causes a shared
lock for a row of the specified table and for which row this may occur. In SAP DB versions
< 7.4, the share locks were held until the end of the transaction. In version 7.4 and above,
the share lock is removed after the record has been read.

Locking of data entities and optimal multi-user operation are in direct conflict with one
another. It is not recognizable whether the waiting user is waiting for a lock or whether the
system is running poorly.

26

ISOLATION LEVEL 1

™

}7

update personal

set name = 'Meier'
where pnr = '4711'
and name = 'Jobst'

COMlMIT

LOCK ROW EXCL

T2

© SAP 2009 / MaxDB 7 8 Internals — L ocking/Page 27

select *
from personal
where pnr = '4711"'

REQ ROW share

select *
from personal

where pnr = "4711"
PNR NAME
4711 Meier

27

ISOLATION LEVEL 15

T

update personal
set name =
where pnr =

T2

}7

and name =

REQ ROW EXCL

'Lutz'
'8500"
'Bar’'

update personal

set name = 'Lutz'
where pnr = '8500'
and name = 'Bar'

open cursor
select *

from personal
where pnr = '4711’

fetch cursor pos(1l)

fetch cursor pos(2)

fetch cursor pos (1)
close cursor

PNR NAME

LOCK tab share

4711 Meier

9 / MaxDB 7.8 Internals — Locking/Page 29

29

ISOLATION LEVEL 15

T

update personal
set name 'Lutz’'
where pnr '8500"'

T2

%___ from personal
where pnr = '4711"

Open cursor
select *

and name 'Bar'

LOCK ROW EXCL

fetch cursor

for reuse

LOCK tab share

© SAP 2009 / MaxDB 7 8 Internals — L ocking/Page 30

Ngrag

close cursor

PNR NAME

4711 Meier

30

ISOLATION LEVEL 15

Write access

Goal:
- modify tables that are committed for the duration of an SQL command

Implementation:

- temporary table locks during execution of the SQL command (tab share)
- exclusive row locks (row excl) on new/updated rows until end of transaction

2 2009 / MaxDB 7 8 Internals — L ocking/Page 31

When inserting, changing or deleting rows, the exclusive locks are assigned implicitly to
the transaction for the relevant rows that are not released until the end of the transaction.

31

ISOLATION LEVEL 2

Read access

Goal:
- read from tables that are committed for the duration of an SQL command
- avoid concurrent follow up modifications to the rows read

Implementation:
- temporary table locks during execution of the SQL command (tab share)

- the rows read are secured from concurrent modifications by using share locks
(repeatable read)

2 2009 / MaxDB 7 8 Internals — Locking/Page 32

Isolation Level 2 safeguards against the "Non Repeatable Read" phenomenon,.

A record that is read multiple times within a transaction always contains the same values.

32

ISOLATION LEVEL 2

Read access

the temporary table lock (tab share) will be released

- after execution of the SQL command, if a temporary result table is created (result is
copied)

- after closing of the result table (close)

- at the end of the transaction

the row locks will be released (row share)
- at the end of the transaction
— explicitly with an UNLOCK command

2009 f MaxDB 7 8 Internals — L ocking/Page 33

If you specify the isolation level 2 or 20 (repeatable), then shared locks are requested
implicitly for all the tables addressed by an SQL statement data query before processing
starts.

If an SQL statement generates a result table, which is not physically saved, then these
locks are not released until the end of the transaction or when the result table is closed.
Otherwise, the locks are released immediately after the SQL statement is processed.

The table shared lock is not assigned to the transaction with SQL statements, where
exactly one row in a table is processed that is determined by key specifications or using
CURRENT OF <result table name>.

In addition, an implicit shared lock is assigned to the transaction for each row read while an
SQL statement is being processed. These locks can only be released using an UNLOCK
statement or by ending the transaction.

33

ISOLATION LEVEL 2

update personal

update personal

'T1 set name = 'Busse' set name = 'Busse'
where pnr = '4711' where pnr = '4711'
| and name = 'Meier' and name = 'Meier'
| REQ ROW EXCL
T2

into :pnr, :
from personal

select pnr,name
name

select pnr,name

where pnr = '4711"'

LOCK ROW share

PNR NAME
4711 Meier

© SAP 2009 / MaxDB 7 8 Internals — L ocking/Page 34

where pnr = '4711'

LOCK ROW share

PNR NAME
4711 Meier

into :pnr, :name
from personal

COMMIT

34

ISOLATION LEVEL 2

Write Access

Goal:
- modify tables that are committed for the duration of an SQL command

Implementation:

- temporary table locks during execution of the SQL command (tab share)
- exclusive row locks (row excl) on new/updated rows until end of transaction

2 2009 / MaxDB 7 8 Internals — L ocking/Page 35

When inserting, changing or deleting rows, the exclusive locks are assigned implicitly to
the transaction for the relevant rows that are not released until the end of the transaction.
No locks are set for the whole table, however.

35

ISOLATION LEVEL 3

Read access

Goal:
- read from tables that are committed for the duration of an SQL command

- avoid concurrent follow up modifications to the rows read
during current transaction (phantom)

Implementation:
- table locks (tab share)

- release of share locks
— at the end of the transaction
— explicitly with an UNLOCK command

2 2009 / MaxDB 7 8 Internals — L ocking/Page 36

If you specify the isolation level 3 or 30 (serializable), then a table shared lock is implicitly
assigned to the transaction for every table addressed by an SQL statement.

These shared locks can only be released by ending the transaction. This table shared lock
is not assigned to the transaction with SQL statements, where exactly one row in a table is
processed that is determined by key specifications or using CURRENT OF

<result table name>.

Isolation level 3 safeguards against three types of access anomalies:
m Dirty Read
m Non Repeatable Read

m Phantom

36

ISOLATION LEVEL 3

T

select *

from personal
where name like

I'M% T

}i

PNR

NAME

4711
5200

Meier
Miiller

LOCK TAB SHARE

T2

|
COMMIT

insert personal
values

© SAP 2009 / MaxDB 7 8 Internals — L ocking/Page 37

('6000",

'"Mehnert')

REQ ROW EXCL

insert personal
values

('6000', 'Mehnert')

37

ISOLATION LEVEL 3

™

where pnr
and name

T2

update personal

set name = 'Meier'’
'4711"
'Jobst'

LOCK ROW EXCL

ROLLBACK

REQ TAB share

select *

from personal

where pnr

= '5200"

select *

from personal
where pnr = '5200'

PNR

NAME

5200

Miiller

38

ISOLATION LEVEL 3

Write Access

Goal:
- modify tables that are committed for the duration of an SQL command

Implementation:
- table locks during execution of the SQL command (tab share)
- exclusive row locks (row excl) on new/updated rows until end of transaction

2 2009 / MaxDB 7 8 Internals — Locking/Page 39

When inserting, changing or deleting rows, the exclusive locks are assigned implicitly to
the transaction for the relevant rows that are not released until the end of the transaction.

39

™

T2

T3

update personal
set name = ‘Jones’'

where userid =

'4711'and name

'McEwen'

from personal

MVCC: Multi Version Concurrency Control

commit

-

MVCC transaction level Snapshot

select *
from personal

from personal

where name like "M%’ where name like 'M%'
NAME PNR NAME
McEwen 4711 McEwen
5200 Miller

MVCC statement level Snapshot

select *

@ SAP AG20Tax08 7.8 Internals

where name like 'M%' from personal
NAME where name like 'M%'
McEwen PNR NAME
5200 Miller

Multi version concurrency control ensures consistent read operations.

Concept of MVCC:

updates do not overwrite existing records

updates insert new versions

=> transactions may write a new version of some data while concurrent transactions still have read access to

previous versions.

Transaction level snapshot: all statements of a transaction see the same snapshot => isolation level

repeatable read

Statement level snapshot: different statements in a transaction may see different snapshots => isolation level

read committed (non repeatable read) Each statement sees the changes that were committed when the

execution of the statement started.

MVCC is not supported in MaxDB Version 7.8. You must not activate MVCC in MaxDB version 7.8

Lock Key

Implementation

Locking a row (1)
- arow is locked by blocking the access via primary key
- if a unique index exists, this secondary key is locked too (secure the one-to-one

relation)
Primary Key Lock Key
Lock management
Secondary Key (ROWID)

41

Lock Key Composition

Lock keys have a maximum length of 64 Byte

A lock key consists of 4 parts:
Start of the primary key (28 Byte)
Tail of the primary key (28 Byte)
Generic hash values (2 x 4 Byte)

28 Bytes 28 Bytes 4 Bytes | 4 Bytes

Hash 1 Hash 2

axDB 7.8 Internals — Locking/Page 42

The unique identifier of a record is the primary key. Locks using long primary key values
with variable lengths would be inefficient.

Thus, for each primary key a lock key is generated if the primary key is longer than 64
bytes.

As of version 7.4, the lock key has a maximum length of 64 bytes, which is independent of
the 64-bit or 32-bit architecture.

The first 56 bytes of the lock key are created from the combination of the first 28 bytes and
last 28 bytes of the primary key.

The last 8 bytes of the lock key are generated using two different hash algorithms and with
the help of the entire primary key. The result of the first hash algorithm is stored in the
second-to-last 4 bytes and the result of the second hash algorithm in the last 4 bytes.
Thus, optimum dispersion of the of the lock key values is ensured.

42

Locking LOB Columns

Implementation

Locking a row (I1)

- Accesses to LOB (former LONG) values always are secured by locks as reading and
writing LOB values can require multiple /O requests. Thus locking LOBs is independent
of the ISOLATION LEVEL)

- Locks for LOB values are realized as table locks (tab).

- Each LOB value is identified by a unique TAB-ID, which is used to build the lock entry
(i.e. the lock key)

Read access
- The database releases the lock immediately after the read access.

© SAP 2009 / MaxDB 7 8 Internals — L ocking/Page 43

43

Locklist

Concept (1)

Structure:

- segmental list of transactions
- segmental list of tables

- segmental list of lock keys

Views into the locklist

- local view on transactions

- global segment oriented view on tables

- global segment oriented view on lock keys

2 2009 / MaxDB 7 8 Internals — Locking/Page 44

44

Structures of the Locklist

UPDATE tab SET name = 'Meier' WHERE pid = 4711
l Trans Stripes l Table Stripes l Row Stripes
[I [
I : : [: : I : ‘
[. [. [.
[[I
Transactions Table Lock keys
hash (Session ID) hash (Table ID) hash (Lock Key)
Tab 1 Row 1 j
*Trans. ID *Trans. ID
» Share cnt * Row Share Cnt
* Row Share Cnt
Share « Row Excl. Cnt

Excl Tab n Row n
m Share

@I Pool freier Eintrage
(MaxSQLLocks)

© SAP 2009 / MaxDB 7 8 Internals — L ocking/Page 45

Procedure for generating a lock entry:

m Check whether the private transaction view already contains the lock entry (unprotected sequential
search).

m [f the lock entry is not contained in the private transaction view, the segment assigned to the table of the
global table view is checked with respect to a lock collision (hash access).

m In the case of table locks, set the lock or make a lock request

m [f the lock entry is not contained in the private transaction view, the segment that is assigned to the table
of the global table view is checked with respect to a lock collision (hash access).

m Set the lock or make a lock request for row locks.
The transaction ID displays the exclusive lock in the table and lock key view.
In the table view, Row Share and Exclusive Counter are used to calculate the escalation.

The number of segments of each view is set using the parameters
TransactionLockManagementStripes (_ TRANS_RGNS), TableLockManagementStripes
(_TAB_RGNS)und RowLockManagementStripes (ROW_RGNS). There are 8 segments, by
default.

45

THE BEST-RUN BUSINESSES RUN SAP”

46

