
 1

 2

 3

A transaction is a sequence of one or more processing steps. It refers to database objects

such as tables, views, joins and so forth.

Here, the following properties must be fulfilled:

 Indivisibility

 A transaction is atomic or, in other words, it will either be completely (all of its operations) executed or not

at all ("All or nothing principle"). Example: there are no employees without salary.

 Consistency

 The defined integrity conditions remain fulfilled. For example, each employee has a personnel number.

 Isolation

 The operations within the transaction are isolated from the operations of other transactions.

 Permanency

 Changes that transactions have made to objects must be persistent following a system crash, for example.

 ACID condition= Atomic, Consistent, Isolation, Durable.

 4

If several transactions want to access the same objects concurrently, these accesses must

be synchronized with the help of lock management.

Since the database system allows concurrent transactions to access the same database

objects, locks are required to isolate individual transactions.

Locking an object means that other transactions are not able to use it in certain ways.

The more locks that are set, and the longer these stay in place, the less concurrency is

possible in database operation.

All locks are released by the end of the transaction at the latest.

 5

Locking management handles three types of objects:

 Records

 Tables

 Database catalog entries

Requesting locks implicitly

You can choose the lock type by specifying an isolation level when opening the

database session. The database system then requests locks implicitly during processing

of an SQL statement in accordance with the specified isolation level. All changing SQL

statements (such as INSERT, UPDATE, DELETE) always request an exclusive lock.

Requesting locks explicitly

You can use the LOCK statement to explicitly assign locks to a transaction. You can

specify a LOCK option in an SQL statement to lock individual rows in a table. This is

possible in every isolation level. You can use the LOCK option to temporarily change

the isolation level for an SQL statement.

 6

Read locks (share locks) refer to a row or a table.

 Once a shared lock is assigned to a transaction for a particular data object, concurrent

transactions can access the object but not modify it. Other transactions can set a shared lock, but

not an exclusive lock for this object.

Read locks (share locks) refer to a row or a table.

 Once an exclusive lock is assigned a transaction for a particular database object, other

transactions cannot modify this object. Transactions that check for the presence of exclusive

locks, or that want to set exclusive or shared locks, conflict with the existing exclusive lock of

another transaction. You cannot access the locked object.

Optimistic lock on a row level

 An update operation on a row is only actually performed if this row has not been changed in the

meantime by a concurrent transaction. If the update operation was successful, an exclusive lock is

set for this row. If the update operation was not successful, it should be repeated after reading the

row again with or without an optimistic lock. In isolation level 0, an explicit lock must be specified

for the new read operation. In this way, it can be ensured that the update is done to the current

state and that no modifications made in the meantime are lost.

 It only makes sense to use an optimistic lock if one of the isolation levels 0, 1 or 10, or 15 has

been assigned. An optimistic row lock must be explicitly requested by specifying a LOCK

statement. A request can conflict with an exclusive lock only.

 7

The above table provides an overview of possible parallel read locks (share locks) and

write locks (exclusive locks).

A lock collision exists in the cases which are marked with "No"; i.e., after having requested

a lock within a transaction, the user must wait for the lock to be released until one of the

above situations or one of the situations that are marked with "Yes" in the matrix occurs.

Additionally, the following applies:

 If no lock has been assigned to a transaction for a data object, then a shared or exclusive lock can be

requested within any transaction, and the lock is immediately assigned to the transaction.

 If a shared lock has been assigned to a transaction T for a data object, and if no lock has been assigned to

any concurrent transaction for this data object, then the transaction T can request an exclusive lock for this

data object and the lock is immediately assigned to this transaction.

 If an exclusive lock has been assigned to a transaction for a data object, then a shared lock can, but need

not be requested for this transaction.

 8

 9

If a lock request collides with an existing lock:

 the user waits on the existing lock, OR

 an error message is returned for the existing lock.

If the user has to wait (default), he will receive an error message after the lock request has

timed out.

Timeouts are updated every 30 seconds by the Timer Task.

A deadlock occurs when two or more users mutually prevent each other from proceeding.

Deadlocks are recognized down to a certain depth in the database. The users involved in

the deadlock receive an error message. The deadlock is resolved.

Deadlocks that were not recognized by the system are resolved by the timeouts

(transactions will be rolled back).

 10

A mass command is an SQL statement that affects multiple records.

Example: Update PERSONAL set SALARY (GEHALT) = SALARY* 1.5 where GENDER

(GESCHLECHT) = "female" (weiblich)

Default value of the parameter RowLocksPerTransactionThreshold is 50. The old name

was ROW_LOCKS_PER_TRANSACTION.

 11

 12

The system table LOCKSTATISTICS describes the current lock entries and entries for lock

requests.

Using the system table LOCKSTATISTICS you can determine the following database

information, among other things:

 All locks that are held on a table

 All locks that the current user is holding during his database session (if this is the current user

(DBA user) or database system administrator (SYSDBA user), then all locks are displayed).

Users that belong to other user classes only see the locks held by that one user.

 13

 14

 15

Display of the current wait situations

Task 33 waits for a lock, which can then be assigned only once task 46 has provided the

shared table lock.

Exclusive locks prevent other users from accessing the locked entry. These locks can

significantly interfere with the performance of the SAP system and the database system.

Procedure to determine the user who triggered the lock

 The column "Appl.ID" displays the process ID of the work process on the application server "Appl.Server".

You will find the corresponding SAP work process in transaction SM51/SM50 or SM66.

 The corresponding task (here, task 46) can be aborted in the task manager under "Kernel Threads".

 16

Display of all active and requested database locks.

Exclusive locks prevent other users from accessing the locked entry. These locks can

significantly interfere with the performance of the SAP system and the database system.

The system displays detailed information about the locks currently set. This display can be

very long in a running SAP system. Therefore, always display the analysis of SQL locks

from the overview of wait situations (exclusive).

Task T33 requests a write lock on a record belonging to the table D010L.

Task T46 holds a table lock on table D010L.

 17

 18

The isolation level plays an important role in the lock activities of the database system. You

use the isolation level to specify whether locks are requested or released implicitly, and

how.

Your choice of isolation level affects the degree of parallelism of concurrent transactions

and the consistency of the data: the lower the value of the isolation level, the higher the

degree of parallelism, and the lower the degree of guaranteed consistency

If transactions are competing for access to the same data, then different isolation levels

can cause different sorts of inconsistencies. You can find a compromise between

parallelism and consistency, while taking into account the requirements of your database

application.

When concurrent transactions are processed, inconsistent situations can occur. Try and

avoid these situations by configuring the lock behavior and isolation level of the database

system accordingly.

 19

A row is modified in the course of a transaction T1, and a transaction T2 reads this row

before T1 has been concluded with the COMMIT statement. T1 then executes the

ROLLBACK statements. In this case, T2 read a row that never actually existed.

 20

Transaction T1 reads a row. Transaction T2 then modifies or deletes this row, and

completes the action with the commit statement. If T1 then reads the row again, it either

gets the modified row or a message indicating that the row no longer exists.

 21

Transaction T1 executes an SQL statement S that reads a set of rows (M) fulfilling a

search condition. Transaction T2 then inserts or modifies data, and produces another row

that fulfills this search condition. If T1 then executes the statement S again, the set of rows

that is read differs from the set M.

 22

Isolation level 0 does not offer any protection against access anomalies.

If you specify the isolation level 0 (uncommitted), then rows are read without shared locks

being requested implicitly. If a row is then read twice within a transaction, this isolation

level does not guarantee that the row has the same state the second time as the first,

since it could have been changed by a competing transaction between the two reads.

Furthermore, there is no guarantee that the state of a row that was read has already been

recorded in the database using a COMMIT WORK statement.

 23

 25

 26

When you retrieve data using an SQL statement, the database system ensures that, at the

time each row is read, no exclusive lock has been assigned to other transactions for the

given row. However, it is impossible to predict whether an SQL statement causes a shared

lock for a row of the specified table and for which row this may occur. In SAP DB versions

< 7.4, the share locks were held until the end of the transaction. In version 7.4 and above,

the share lock is removed after the record has been read.

Locking of data entities and optimal multi-user operation are in direct conflict with one

another. It is not recognizable whether the waiting user is waiting for a lock or whether the

system is running poorly.

 27

 29

 30

 31

When inserting, changing or deleting rows, the exclusive locks are assigned implicitly to

the transaction for the relevant rows that are not released until the end of the transaction.

 32

Isolation Level 2 safeguards against the "Non Repeatable Read" phenomenon,.

A record that is read multiple times within a transaction always contains the same values.

 33

If you specify the isolation level 2 or 20 (repeatable), then shared locks are requested

implicitly for all the tables addressed by an SQL statement data query before processing

starts.

If an SQL statement generates a result table, which is not physically saved, then these

locks are not released until the end of the transaction or when the result table is closed.

Otherwise, the locks are released immediately after the SQL statement is processed.

The table shared lock is not assigned to the transaction with SQL statements, where

exactly one row in a table is processed that is determined by key specifications or using

CURRENT OF <result_table_name>.

In addition, an implicit shared lock is assigned to the transaction for each row read while an

SQL statement is being processed. These locks can only be released using an UNLOCK

statement or by ending the transaction.

 34

 35

When inserting, changing or deleting rows, the exclusive locks are assigned implicitly to

the transaction for the relevant rows that are not released until the end of the transaction.

No locks are set for the whole table, however.

 36

If you specify the isolation level 3 or 30 (serializable), then a table shared lock is implicitly

assigned to the transaction for every table addressed by an SQL statement.

These shared locks can only be released by ending the transaction. This table shared lock

is not assigned to the transaction with SQL statements, where exactly one row in a table is
processed that is determined by key specifications or using CURRENT OF

<result_table_name>.

Isolation level 3 safeguards against three types of access anomalies:

 Dirty Read

 Non Repeatable Read

 Phantom

 37

 38

 39

When inserting, changing or deleting rows, the exclusive locks are assigned implicitly to

the transaction for the relevant rows that are not released until the end of the transaction.

 40

Multi version concurrency control ensures consistent read operations.

Concept of MVCC:

updates do not overwrite existing records

updates insert new versions

=> transactions may write a new version of some data while concurrent transactions still have read access to

previous versions.

Transaction level snapshot: all statements of a transaction see the same snapshot => isolation level

repeatable read

Statement level snapshot: different statements in a transaction may see different snapshots => isolation level

read committed (non repeatable read) Each statement sees the changes that were committed when the

execution of the statement started.

MVCC is not supported in MaxDB Version 7.8. You must not activate MVCC in MaxDB version 7.8

 41

 42

The unique identifier of a record is the primary key. Locks using long primary key values

with variable lengths would be inefficient.

Thus, for each primary key a lock key is generated if the primary key is longer than 64

bytes.

As of version 7.4, the lock key has a maximum length of 64 bytes, which is independent of

the 64-bit or 32-bit architecture.

The first 56 bytes of the lock key are created from the combination of the first 28 bytes and

last 28 bytes of the primary key.

The last 8 bytes of the lock key are generated using two different hash algorithms and with

the help of the entire primary key. The result of the first hash algorithm is stored in the

second-to-last 4 bytes and the result of the second hash algorithm in the last 4 bytes.

Thus, optimum dispersion of the of the lock key values is ensured.

 43

 44

 45

Procedure for generating a lock entry:

 Check whether the private transaction view already contains the lock entry (unprotected sequential

search).

 If the lock entry is not contained in the private transaction view, the segment assigned to the table of the

global table view is checked with respect to a lock collision (hash access).

 In the case of table locks, set the lock or make a lock request

 If the lock entry is not contained in the private transaction view, the segment that is assigned to the table

of the global table view is checked with respect to a lock collision (hash access).

 Set the lock or make a lock request for row locks.

The transaction ID displays the exclusive lock in the table and lock key view.

In the table view, Row Share and Exclusive Counter are used to calculate the escalation.

The number of segments of each view is set using the parameters

TransactionLockManagementStripes (_TRANS_RGNS), TableLockManagementStripes

(_TAB_RGNS)und RowLockManagementStripes (_ROW_RGNS). There are 8 segments, by

default.

 46

