
 1

 2

Performance Analysis Tools

MaxDB provides various tools and methods for the analysis of performance bottlenecks

and monitoring current database activities. Some of these tools were originally developed
only for testing and analysis in MaxDB development, but can also be used by experienced
database administrators for performance analysis.

The following are of particular importance for performance analysis:

 The x_cons console for monitoring current operations

 The Database Analyzer program for analyzing performance bottlenecks

 The diagnostic function DIAGNOSE MONITOR for identifying long-running or poorly-
processed SQL statements

 The diagnostic function DIAGNOSE ANALYZE for displaying information about all
current SQL statements

x_cons and Database Analyzer are stand-alone programs and are called from the
operating system command line. DIAGNOSE MONITOR is a part of the core functions of
MaxDB.

In SAP WebAS, all functions and results can be controlled and analyzed using transaction
DB50 => Current Status or DB50 => Problem Analysis. Required parameter settings, if
any, are menu-driven.

 3

DB Console x_cons

The database console x_cons gives you a quick overview of the operating system resources that the

database system is using, the distribution of the database session among the operating system threads, and

the status of the active database sessions. You can also use other functions that are intended mainly for

support employees and developers.

Start on shell level: x_cons <dbname > <command> [<interval>] [<repeat>]

x_cons <dbname> help returns a complete overview of all available command functions.

The database console can also be addressed remotely via the DBM server.

 4

CANCEL index cancels the command executed by task <index>

KILL index kills the session of task <index>

SHOW [LONG | COMPRESS] (Unix)

DEBUGLEV level set debug level for the kernel

DEBUGTASK index writes back trace of task to knldiag

RESET obj_cnt resets counter about the following objects: IO

T_CNT REGIONS (ALL) incl. local counters of any task

ERRIOR devno forces error at next read to devno

ERRIOW devno forces error at next write to devno

TIME enable enables time measurements

! command execute shell command (Unix only)

QUIT exit console driver (Unix only)

 5

x_cons <dbname> show rte

This shows the distribution of the MaxDB threads among the operating system processes.
The DB threads coordinator, console, timer, requestor and Dev0 each have their own

operating system threads. The entire database kernel runs in a single process.

However, multiple database tasks (user task, log writer, utility task, and so on) can be

located together in an operating system thread, which is called a UKT (user kernel

thread). The MaxDB runtime environment uses internal tasking to administer these

database tasks. Internal MaxDB administration takes up less operating system time,

and gives you more control over the scheduling and prioritization of individual database

sessions.

The database parameter MAXCPU is normally used to distribute the tasks automatically to

the UKTs; the (support) database parameter TASKCLUSTER (requires change in the

control file cserv.pcf) can also be used for this purpose, but only in consultation with

SAP support.

 6

Abbreviations of the Database Tasks in TASKCLUSTER:

Abbreviation

 tw Trace writer, writes kernel traces and dumps

 ti Task for timeout monitoring

 al Log writer

 dw Tasks for cache monitoring and asynchronous cache displacement as well as savepoint I/O

 ut Utility task for administration tasks (start backup, recovery, and so on).

 sv Server processes for backup I/O and special operations such as parallel index generation

 us User tasks for executing SQL statements

 gc Garbage collector

 ev Event task

 fs Floating service for load balancing

 7

x_cons <serverdb> show active [<interval>] [<repeat>]

Presents an overview of the states of all active tasks.

Appl pid

 Process ID of the application program linked to the task. An asterisk (*) before the PID indicates that

the process ID is on a separate computer and is being accessed remotely.

Region

 cnt: Displays the number of times the region has been accessed since the task has been running.

 try: The number of the queried or held region

 UKTsleep

 Number of semaphore waits per UKT

 8

In a system with one CPU, only one task can be running at a given time. If x_cons nevertheless shows two

tasks running, this is due to unprotected access.

 9

 10

 11

x_cons <dbname> show t_c t<task_index> displays highly- detailed measurement values for individual database tasks.
In this way, you can, for example, monitor the DB activity of an application while it remains connected to a database
task (no permanent release/connect).

Furthermore, with x_cons <dbname> time enable you can activate precise time measurement of the different database
states. Depending on the operating system, this time measurement costs between 1% and 5% performance.

Much of the output of the 'show t_c' function was developed exclusively for developers, however, some of the values are
of more general interest in special situations.

dispatcher-cnt Count of how often the task passed control to the UKT dispatcher, because it could
not run, its time slot had expired, or another task was prioritized.

total_excl-cnt Number of region accesses

command-cnt Communication count between application and kernel

self_suspend-cnt Number of task suspensions in which the task remained executable
 but still gave up control

<dev/self>_<read/write>_io Number of I/Os via UKT (self) or DEV threads (dev)

<dev/self>_<read/write>_tm Duration of an I/O via UKT (self) or DEV threads (dev)

state_vwait Number of waits on SQL locks

avg_vwait_time Average wait time for an SQL lock

avg_rcv_rpl_t Average processing time of an SQL statement in the database kernel

 ‹#›

rcv_rpl_long Number of SQL statements with a processing time of more than one
second

 12

The command show io displays the number of read and write operations per volume as

well as the number of 8 KB pages read. These numbers are independent of whether the

I/O are synchronous or asynschonous.

Show dev_io displays the number of read and write operations of the I/O threads and the

average I/O times.

 13

Performance Tables/ Database Console

Much of the data generated with x_cons is also accessible through tables. Thus this performance data can

also be displayed by other tools (SQLStudio, SAP WebAS->DB50).

The columns of the respective tables largely correspond to those of the database console.

 14

 15

 16

 17

 18

The task manager in transaction DB50 displays all database tasks and their current status. The system

displays an overview of the database tasks and information about the current state of each individual task.

The following views are available: Active Tasks, ExecutableTasks, User Tasks (task type User), System

Tasks , All Tasks.

We use the task manager to analyze the following:

 For this database MAXCPU is set to 2. Thus the database can use 2 CPUs in parallel. Task T37 is

running in another UKT (see Thread Overview, thread ID:1582) as task T61 and T63 (thread ID:1607).

Tasks T37 and T63 can both have the Running status.

 We see a command (T61) that reads data from the disk to the cache - IO-WAIT (R).

In the Application column we see the process ID of the work process and via the Application Server

column we see the SAP application server.

With transaction SM50, we can identify the application that caused the long-running command using the

application PID (2887).

 19

With the task manager it is possible to terminate the respective task (T37) directly on the database level.

The information in the process overview can then be used to examine the application for possible

programming errors or missing indexes.

 20

 21

CSN note 530394 describes bottleneck analysis with the Database Analyzer.

The DBAnalyzer is available as of version 7.3.00 Build 25.

The tools x_wizard and x_wiztrc were discontinued as of release 7.4.

Enhanceability

The tools x_wizard and x_wiztrc were not configurable. The Executables had to be recreated for each

platform every time an enhancement was carried out.

The logic and rules for monitoring with the Database Analyzer are defined by way of a configuration

file (ASCII text). In case of changes or enhancements, you only have to cahnge the configuration file in

the directory INSTROOT/env.

Release independence

As accesses to the system tables are defined in the configuration file, adjustments for new releases

only require adjusting the configuration file. Consequently, this is release-independent, but the

Database Analyzer itself is not. The configuration file takes account of the instance type (OTLP/LVC).

Remote capability

In addition to system tables, the x_wizard used output from “x_cons” that could only be generated on

the database server.

The Database Analyzer uses only system tables. The data generated by “x_cons” can be queried via

the SYSMON_…, system tables, which means they can be called remotely (e.g. via OSS).

 22

Database Analyzer

For routine monitoring of database operation in the production system, an interval of 15 minutes (-t900) is

adequate. For short-term monitoring of database operation, a measuring interval of 10-30 seconds is

recommended.

If class W3 warnings occur frequently, you should certainly try to remove the bottleneck. W3 warnings

generally indicate that the runtime behavior of the database is severely compromised. If you suspect poor

search strategies (rows read/rows qualified), a more precise analysis is unavoidable. The command monitor

(DIAGNOSE MONITOR) is available for this purpose.

Not all Database Analyzer outputs are necessarily caused by actual bottlenecks. For example table scans

can be useful in certain situations, long runtimes of statements can automatically occur with large datasets

etc.

 23

Configuration File: dbanalyzer.cfg

 Describes ("where and why") the data to be collected or calculated (parameters). These parameter are

either taken from the database (system tables) or calculated from the parameter taken from the

database. As the manual evaluation of parameters is time-consuming, the Database Analyzer formats the

logged data.

 Describes the evaluation rules (monitors) for the parameters. The monitors have up to four conditions

(Information and Warnings 1 through 3) and are logged in a way that takes account of the conditions.
For logging the monitors, in the configuration file you can store a verbal assessment or even concrete

instructions for the user.

 24

Up to four conditions for triggering the monitor. Conditions are boolean expressions that refer to parameters.

The top-level message is stored in the label. The label is an expression that is calculated when the monitor is

activated. This enables references to the parameters.

User-selected texts for Description and UserAction.

 25

 26

 27

You can also call the Database Analyzers with the DBMCLI command dban_start . The Database Analyzer is then

implicitly started in the background. The Database Analyzer call can be supplemented with various options.

-n <server>

Name of the computer on which the database instance is running. If you enter this argument, you have to specify a

directory for logging with the -o switch.

-d <database>

Name of the database instance that is to be examined.

-u <user,pwd>

User name and password for authorization on the database server.

-f <configfile>

Indicates the name of the configuration file to be used. The standard setting specifies the file dbanalyzer.cfg in the

directory $INSTROOT/env.

-t <interval>,<number>

Defines the time interval (in seconds) between two evaluations. If <number> is specified, the Database Analyzer ends

automatically when it has reached the specified number.

-o <outputdir>

Specifies the directory in which the log files of the Database Analyzer are written. If you specify -n <server> at the

time of the call, you also have to specify a log directory. If you fail to specify a log directory, logging is done in the

RUNDIRECTORY of the database instance in the subdirectory analyzer.

-c <outputlevel>

Specifies that Database Analyzer output also be written to the console. In the standard setting, no output is written to

the console. With <outputlevel> you can specify how much is to be output. The possible values are 1, 2, 3 and 4.

-i Deletes (initializes) any pre-existing log files. This enables the logging of data from different databases in the same

directory, which is otherwise prohibited. The data of the previously analyzed database are deleted in the process.

 28

For routine monitoring of database operation in the production system, an interval of 15

minutes (-t900) is adequate. Logging should be activated with -p to obtain a retrospective

overview of DB activities. For short-term monitoring of database operation, a measuring

interval of 10-30 seconds is recommended.

 29

As of support packages 6.20 SP37, the Database Analyzer starts automatically when the SAP WebAS

system is started.

You can call the Database Analyzer from transaction DB50 -> Problem Analysis-> Bottlenecks. You can also

stop and restart it from there.

The default time interval for determining measurement data is 15 minutes. You can override this configuration

stopping and restarting the Database Analyzer.

Each time the Database Analyzer is started, information about the configuration and performance-relevant

data from system tables is output, including, for example, the number of tables that require an Update

Statistics. You can determine the table names with a Select on the system table sysupdstatwanted.

Detected bottlenecks are output in text form to rapidly provide database administrators with an overview of

the possible causes of performance problems. The analysis can be performed just once or at regular

intervals.

 30

Under Expert Analysis you can view into the logs of a particular day.

Logs are implicitly deleted periodically via the program RSDBANCONTROL. You can configure how long logs

are kept using transaction DB59 in the integration data for the respective system. (6.20 as of basis SP 37).

 31

You can build aggregates on a daily, weekly, monthly or quarterly basis for the journalized data. Data can be

prepared furthermore by the list viewer building sums, min, max and average values, can be loaded to the

local desktop or graphically displayed.

 32

Storing performance data in the logs is useful when checking runtime behavior later.

The collected data is stored as "csv" files in the directory/YYYYMMDD specified with "-o".

If you start the Database Analyzer on the DB server, you can omit the "-o" entry.
In that case, logging is done in the run directory/YYYYMMDD

A directory contains the data from one day.

The data is grouped by contents and stored in different files. You can display the day in a table with MS Excel

and from the WebAS.

 33

 34

 35

 36

Via transaction DB59 -> Integration Data-> Automatic Monitoring, you can define the time interval at which

Database Analyzer logs are deleted.

By default, the logs are stored for 93 days.

The corresponding information in the database table SDBCCMS, however, is kept for 15 weeks. For more

information, see note 530394.

You can make your own personal settings by choosing Display/Change.

 37

Database Analyzer: Data Cache

Low data cache hit rate : <percentage> %

 <number of> accesses, <number> successful, <number> unsuccessful

Explanations

The hit rate is too low when accessing the database cache. The data cache hit rate for a running database

application should not be less than 98%; otherwise, too much data has to be read physically. For a short

time, lower hit rates may occur; e.g., when reading tables for the first time, or when the table does not fit into

10% of the data cache with repeated table scans (only with

UseDataCacheScanOptimization/LRU_FOR_SCAN = NO). Data cache hit rates under 98% for

intervals of 15 minutes or more must be avoided.

User response

In addition to enlarging the data cache (note the paging risk in the operating system), search for the cause of

the high read activity. Frequently, individual SQL statements cause a high percentage of the total logical and

physical read activities. Enlarging the cache only transfers the load from the disk to the CPU although an

additional index, for example, could transform a read-intensive table scan into a cheap direct access.

 38

Database Analyzer: cache displacements

Cache displacements: <number of> pages/second

Explanations

Modified pages are displaced from the data cache to disk because the data used by the applications cannot

be completely kept in the data cache. If the size of the data cache were sufficient, the physical write would be

delayed until the next SAVEPOINT and then be done asynchronously. Cache displacements result in

synchronous I/O and should be avoided, if possible.

User response

Enlargement of the data cache. Particularly with larger data imports, the so-called pagers should be

activated for regular asynchronous buffer flushes between the SAVEPOINTS database parameter

DataCacheIOAreaSize, DataCacheIOAreaFlushThreshold, DataCacheLRUAreaFlushThreshold or in earlier

versions _DW_IO_AREA_SIZE, _DW_IO_AREA_FLUSH, _DW_LRU_TAIL_FLUSH).

 39

Database Analyzer: selectivity

Explanations

The relationship between read and found (qualified) rows is poor for a certain access strategy applied by the

MaxDB Optimizer. This indicates a poor search strategy, caused either by the application

(missing or insufficient indexes) or by poor formulation of SQL statements. Searching large

quantities of data can seriously compromise the performance of the system as a whole due to the numerous

negative effects (I/O, CPU load, etc.).

User response

First of all, see if MaxDB Optimizer is able to find a more suitable strategy after updating the internal database

statistics. The update should be done directly from the SAP system with transaction DB13.

If this does not produce the desired result, search for the statement that triggers the unfavorable search strategy.

The easiest way to do this is with DIAGNOSE MONITOR.

 40

For detailed information on the monitor classes, choose Expert Analysis.

You get an overview of all available logs generated by the Database Analyzer. The significance of the

individual logs is described on the following slides

To display the content of a file, double-click the relevant monitor class.

 41

Logging can be switched on directly in SAP WebAS using transaction DB50 or with the following dbmcli command:

dbmcli -n <dbserver> -d <dbname> -u ... -uSQL sapr3,sap sql_execute

diagnose monitor selectivity <number>

 | read <number>

 | time <number>

 | rowno <number>

 | off

Selectivity: Ratio of qualified to total records read is below the specified threshold

 value

Read (page accesses): Specified number of virtual reads exceeded

Time (runtime): Runtime of the command exceeds the specified time in milliseconds

Rowno: Number of statements to be stored as specified in SYSMONITOR (default

 255)

Off: Deactivation

 42

Performance tables

The tables SYSMONITOR and SYSPARSEID are filled following activation of the DIAGNOSE MONITOR.

SYSPARSEID can grow to any size, SYSMONITOR is overwritten cyclically.

The table SYSPARSEID contains the parse ID PARSEID for every parsed statement and the command string

SQL_STATEMENT.

COLUMN NAME MOD DATA TYPE CODE LEN

PARSEID KEY CHAR BYTE 12

LINKAGE KEY FIXED 1

SELECT_PARSEID OPT CHAR BYTE 12

OWNER OPT CHAR ASCII 18

SQL_STATEMENT OPT CHAR ASCII 3900

 43

 44

When you do a performance analysis, check the system settings to ensure that the performance analysis

tools are working.

Monitoring: If monitoring is active, general performance-relevant data is stored in the system tables.
Monitoring is automatically activated by the start scripts when you start the SAP WebAS and the

database.

Monitor Data Collection: activates logging of transfer values in the Where condition of

each SQL statement in the command monitor.

Diagnose Monitor Read / Selectivity: display the settings with which the command monitor (DIAGNOSE

MONITOR) was started. If the command monitor is not active, the corresponding entries in the system

settings are missing.

Diagnose Analyze and Diagnose Analyze Filter: Resource monitor (see below)

Monitor Rows: Number of SQL statements

No of bad Indexes: indicates if there are defective indexes in the database. If an index is defective, it

cannot be used for access.

 45

You start the detailed performance analysis by checking the statistics to see if there is anything unusual in

the functioning of the system today.

Display the database activities for a certain point in time. Let's have a look at Wednesday, 7 November,

2001.

The overview of database activities is logged daily by a collector

(COLLECTOR_FOR_PERFORMANCEMONITOR).

SQL Commands: Total number of SQL statements, commits, rollbacks, prepares

We see that on Wednesday, 7 November, a somewhat higher number of SQL statements was executed

than on other days.

 46

Cache activities: Cache hit rates, number of reads and writes to the database

The cache statistics for 7 November show that the cache hit rates were good, but the number of physical

read and write accesses was significantly higher than on the other days.

 47

Other Activities: Number of table scans, log activities, lock information

On 7 November, the number of table scans is notable. It, too, is very high compared to the other days.
This all implies an application that is "problematic" in performance terms.

 48

The command monitor (Diagnose Monitor) allows you to identify long-running SQL statements. This tool is

intended for short analyses, since the number of recorded SQL statements is limited. Specify criteria to

restrict the volume and type of SQL statements that are recorded.

Within SAP WebAS, logging is activated via transaction DB50 ? Problem Analysis? SQL Performance ?

Command Monitor. You can set up various criteria in succession. A statement is logged when at least one

of the criteria is fulfilled.

Choose Command Monitor -> Change Monitor Settings to determine the recording criteria by which SQL

statements are logged in the command monitor tables.

Number of page accesses: An SQL statement is logged when the number of page accesses exceeds the

specified value.

SQL statement runtime: An SQL statement is logged when the runtime exceeds the specified value (in

seconds).

Selectivity: An SQL statement is logged in the command monitor tables if the ratio of qualified records to

records read falls below the specified percentage.

Save parameter values: Select this field if you want to log the SQL statements with their parameters.

Max. number of monitor entries: This value determines the maximum number of entries that are held in the

table SYSMONITOR before the table is overwritten.

 49

Description of columns that can be configured via the "Change Layout" button:

Table Table on which the SQL statement was used

Program ABAP program that executed the SQL statement

 The prerequisite is to set the WebAS profile parameter:

 dbs/ada/register_appl_info = 1

Runtime Runtime of the SQL command in seconds

#P Accesses Accesses to data pages (in the cache and on the disk)

#R Read Table rows that were read while processing the statement

#R Qualif. Table rows that met the selection condition

Selectivity Ratio #R qualif / #R read in %

#P/R Number of page accesses per qualif. row

#Fetched (#Abgeholt) Number of rows fetched

#Disk I/O I/O accesses to disk (reading and writing incl. converter)

Strategy The select strategy chosen by the Optimizer (table scan, index, key etc.)

Parseid Parse ID

SQL wait situations Number of collisions on SQL locks

Task suspensions Number of collisions on internal locks

Number fetch requests Number of fetches while processing the Select statement

Result set YES, if internal result set was generated (e.g. with sorting), otherwise NO

Date of execution

Time of execution

 ‹#›

Subrequests

 50

To get the detail view of the command, select and double-click the command you want to examine.

If the Save parameter value criterion is active (data collection on), choose Display Execution Plan for SQL

Statement to check which access strategy the SQL optimizer would choose to process this SQL

statement.

If an error in the MaxDB Optimizer is responsible for an unsuitable strategy, development support may

require a trace of the call of the Explain statement. To do this, choose Trace Execution Plan for SQL

Statement. This generates a special Optimizer Vtrace that can be analyzed using transaction DB50

Problem Analysis-> Database Trace.

 51

The Calling point in the ABAP Program can be used to determine the BAP program from which the

statement was started. For this link to work with systems with WebAS versions below 6.40 dbsl patch 32,

set the following parameter in the instance profile of the SAP WebAS: dbs\ada\register_appl_info = 1.

In most cases, the processing of a statement can be accelerated by adjusting the ABAP code.

 52

Using the Explain statement, we see that in our case the statement was executed with a table scan. That

is, the whole table was read in order records that have Berlin in the CITY column and Stromstr in the ST

column.

Here the question arises why an index wasn't used, or rather, why the SELECT was formulated in such a

way.

 53

You can get information on a specified database view or table via DB50 or directly from the command

monitor for the current table.

Attributes: Type, access rights, creation and change dates, the date of the last run for determining

optimizer statistics for this table, as well as the date of the last Check Table on this table (show table).

Definition: Definition of the table in the database instance (this is not the table definition from the ABAP

Dictionary but rather the table definition from the system tables of the database system)

Indices: Indices defined for this table (show index).

Optimizer statistics: Last values determined for the optimizer statistics (show optimize stat).

Table consistency: It is possible to start a CHECK TABLE directly from DB50.

Default sample: Using this function, in the system table domain.tables you change the sample value for

this table when carrying out the UPDATE STATISTICS command. From then on, all following UPDATE

STATISTICS are carried out using the new sample value.

 54

The table definition can provide information as to whether the command could have been processed using

the primary key.

The key of table ZZTELE consists of the columns: Name, First name and Street.

The WHERE condition of the SQL statement consists of the columns City and Street.

Because neither Name nor First name are specified in the WHERE condition, the key cannot be used for

optimization.

 55

The optimizer statistics provide an overview about the selectivity of the individual columns.

The cost-based optimizer determines the best access strategy with the help of statistical information about

the size of the table and values within the table columns.

A cost-benefit plan is created for the various access options.

The optimizer statistics are updated by an UPDATE STATISTICS. You have the option to specify sample

values for this UPDATE STATISTICS run. There is no entry of the sample value in the system table

domain.tables.

 56

Using the Indices function you can check the following:

 whether indices exist for the table

 whether these indices were already used by the optimizer

 whether access to this index is allowed (enabled) or not allowed (disabled)

 whether the index is consistent or perhaps set to BAD

 via which table column the index has been created

There were 3 indices created for the table ZZTELE, and access to them is forbidden. In other words, the

indices were disabled. This could have been necessary in order to test out how a command will be

processed if the index did not exist. This feature is offered since this procedure can be performed more

quickly than if the index is first deleted and then recreated later. Often this is not possible, especially for

large table.

The command logged in the command monitor could therefore only be performed via a table scan

because the index that could be used for the optimization is inactive.

The index can be activated directly from this menu. You can do this by selecting the index and choosing

Allow index access. The column Access will be highlighted in green after performing this action.

After restarting the application, the analyzed command may no longer appear in the command monitor.

 57

As of version SAP WebAS 6.20 with Basis Support Package 39, the detail display is also expanded.

Properties: Type, access rights, creation and change date

Definition: Definition of the tables in the database instance that are involved in the view (this is not the

table definition from the ABAP Dictionary but rather the table definition from the system tables of the

database system)

Create Statement: displays the create statement with which the view was created.

Keys of the Tables: all key columns of all tables involved in the view.

Indexes: Indexes defined for this table

Optimizer statistics: Last values determined for the optimizer statistics (show optimize stat).

 58

By analyzing the resource consumption, you can identify the most costly SQL

statements. The resources used by an SQL statement are measured (runtime and I/O

accesses, for example).

If an SQL statement is used more than once, the total cost is calculated. This enables
you to recognize those SQL statements that have a relatively short runtime, but that

generate a considerable database load due to the number of times they are executed.

The resource monitor is therefore a monitoring tool that can be used for load analysis of
one workday, for example.

You can restrict the statements to be displayed using additional definitions in the display
limits.

With regard to the message in the bottleneck analysis High Read rate physical , it is
page accesses that interest us here.

What is remarkable is that the last statement was only carried out once but displays
over 8400 page accesses.

You can view the statement by double clicking on it.

 59

Here we have a SELECT for table ZZTELE without a WHERE condition. Therefore all records of the table

are read.

In such a case, the application should be examined more closely to see whether all records of the table

are truly necessary for processing or whether using a WHERE condition as a limitation, the actual number

of records to be processed can be decreased.

 60

Performance Tables

The tables SYSCMD_ANALYZE and SYSDATA_ANALYZE are generated and subsequently filled after

DIAGNOSE ANALYZE is activated.

Logging can be activated/deactivated with the following dbmcli command

 dbmcli –n <SAP DB Hostname> -d <SID> -u control,control -uSQL sap<sid>,sap

 sql_execute diagnose analyze on | off

 During parsing, the commands are entered in SYSCMD_ANALYZE and a unique command key is

generated. Identical commands are stored only once for all concurrent sessions. Resource usage is not yet

determined.

Logging of resource usage can be activated/deactivated with the following dbmcli command

 dbmcli –n <SAP DB Hostname> -d <SID> -u control,control -uSQL sap<sid>,sap

 sql_execute diagnose analyze count on | off

 Normal monitoring is required for this, that is, it is activated if necessary. The values are aggregated per

session under the command key in the table SYSDATA_ANALYZE.

Aggregation over several sessions must be done by the application via the command key.

The generated data can be deleted with the following dbmcli command

 dbmcli –n <SAP DB Hostname> -d <SID> -u control,control -uSQL sap<sid>,sap

 sql_execute diagnose analyze CLEAR COMMAND/DATA/ALL

 61

As of version 7.5, MaxDB only requires statistics data for joins and selects with a

restriction of the number of records in the result, such as "WHERE ROWNUM <= n".

For the table itself, Update Statistics only determines the data if the current size

specifications are not in the file directory. This does not apply to tables that were

created with databases of version < 7.6 and for which the size specifications in the file

directory could not yet be determined.

Update Statistics determines statistics data for all columns that are primary keys or index

columns. Additionally, it determines the statistics data for all columns beyond the

primary key and index if statistics are already available.

If the optimizer discovers tables with unsuitable statistics data, it enters them in the table

SYSUPDSTATWANTED. The DBM command sql_updatestat_per_systemtable

executes an Update Statistics for all tables listed in SYSUPDSTATWANTED.

The DBM command sql_updatestat executes an Update Statistics for all tables in the

database.

Update Statistics imports the data for a table from all data volumes in parallel. This makes

it very speedy.

The programs "xpu" and "updcol" are no longer available as of version 7.6..

 62

Sampling with Update Statistics

Database statistics can be created on the basis of samples. The basis for the statistics can

be either a number of rows of your choice or a percentage of the table. While the statistics

are not exact, there are generally sufficient for a correct calculation of the SELECT

strategy since this depends less on precision than on distinguishing between selective and

non-selective columns.

Especially when creating an additional index for an inefficiently processed SQL command,

the selectivity of all columns of a table can be determined relatively quickly using ‘UPDATE

STATISTICS COLUMN (*) ESTIMATE SAMPLE 20000 ROWS’ . The selectivity of a

column is an important criterion when selecting index columns.

The following values have proven adequate sampling quantities for column statistics:

20,000 rows or 5% for tables with more than 1,000,000 data records.

As of version 7.6, the sampling procedure in the standard uses a new algorithm for

calculating the statistics data. You can determine the algorithm to be used with the

parameter UPDATESTAT_SAMPLE_ALGO. The new algorithm generates more accurate

statistics with fewer records read.

 63

