
 1

 2

 3

 4

There are two types of optimizers for relational database systems: rule-based and cost-
based optimizers.

The rule-based optimizer works according to certain rules. For example, if an index is
available, this index will be used for access - independent of the values in the WHERE
condition. With the rule-based optimizer, the strategy for processing SQL statements is
decided at the time of parsing.

Cost-based optimizers determine the best search strategy with the help of statistical
information about the size of the table and values within the table columns.

A cost-benefit plan is created for the various access options. The best strategy is chosen
to execute the command depending on the values defined in the WHERE condition.
Therefore, the eventual search strategy can only be determined at the time of execution.

MaxDB supports cost-based optimizers.

Before the optimization Query Rewrite checks if the statement can be reformulated in a
reasonable way. This check and conversion is done rule-based.

 5

First, an SQL statement is processed by the parser. This performs a syntactic and

semantic analysis. In the semantic analysis, tables and their column data are checked.

The optimizer determines which primary and secondary keys are available for the table

and checks whether a corresponding key can be used to search for values.

For secondary keys, the number of differing values plays an important role. Example: it

does not make sense to search using an index if there is only one secondary key value, it

is precisely this value that will be searched for, and additional table fields will be queried.

The number of pages that have to be read in the secondary index is determined by

generating a start and a stop key. Depending on the number of pages of the table, it is

decided whether it is worthwhile to search using the index. The number of pages of the

entire table is located in the statistics.

At the end, the strategy with which the SQL statement will be executed is determined.

 6

For a JOIN, the optimizer seeks out the most suitable access path for each table.

Then it has to be decided in which order the tables will be processed and connected with

each other. The resulting result sets should be as small as possible. For the join columns,

the values are unknown before the execution. Therefore, the join optimizer can only work

with the statistical values for columns.

 7

The search conditions that the optimizer can use to determine the optimal search strategy

are the following:

 Equality conditions

 Range conditions

 IN conditions

 IN conditions

Here, the search conditions are displayed in the order of their valency. In other words, with

the same preconditions an equality condition is evaluated as being better than an IN

condition.

The SQL Optimizer also converts conditions under certain circumstances. If a single value

is specified in an IN condition multiple times, the condition is converted into an equality

condition.

 8

In the following examples, we use the table ZZTELE with approx. 115,000 records.

For joins and subqueries, the examples also refer to the table ZZSTADTTEIL with approx.

20000 records.

 9

The data of the base tables and the indexes are stored in B*Tree format.

When creating a table, the root page is created. A root page can contain a maximum of 8

KB.

If data records are entered in the tables, the root page is filled with what are known as

separators. A separator is made up of the primary key of the data record. However, due to

space limitations, the entire key is not saved as a separator in the root page, but rather

only the part of the key up to the first significant digit in the key. The more significant a key

is, the smaller the separators are and the more separators can be managed in the root

page.

For very small tables, all data records are already stored in the root page. If the root page

is filled, entering additional records in the table will automatically generate an additional

tree level, or what is known as the Level 1 pages level. The root page will then consist only

of separators and pointers to the corresponding lower level containing the information with

a distinguishing separator.

 10

 11

In the ABAP-based SAP application server, EXPLAIN is available in transactions ST05 and DB50 (in the

command monitor).

In the SQL editor of the Database Studio you can send an EXPLAIN via context menu (right mouse click) to

the database. The output is shown in a separate window.

You can display the search strategy for INSERT, DELETE and UPDATE commands by transforming the

command into a SELECT. The additional option FOR REUSE ensures that the result table is stored.

Example:

 Example:

 UPDATE ZZTELE

 SET ADDINFO = 'ledig'

 WHERE NAME = 'Mueller'

 AND VORNAME = ' Egon'

 AND STR = ' Wexstraße'

 SELECT * FROM ZZTELE

 WHERE NAME = 'Mueller'

 AND VORNAME = ' Egon'

 AND STR = ' Wexstraße'

 FOR REUSE

 12

EXPLAIN shows:

 one block for each table from the SELECT-FROM list

 the order of the strategies reflects the order of execution

 the order of the strategies reflects the order of execution

 COPIED / NOT COPIED --> Results set is generated/not generated

 "Estimated costs" provides an estimate about the number of disk accesses (logical

I/Os).

 Applied Query Rewrite rules and the frequency of their use

 13

An index contains the data of the secondary key as well as the respective primary key

Using the primary key, the data can be found in the base table. For each index, a B*

tree is created, which is sorted according to the values of the secondary key.

There is no record ID or anything similar. The unique ID of a record is the primary key (or

for multiple keys, the combination of primary key fields).

If no primary key was specified when the table was generated, the database generates the
internal field SYSKEY of the type CHAR(8) BYTE. This field is filled with unique values.

Searching via an index is relatively costly. The access is only worthwhile if less than

approx. 30% of the records can be determined from the index and no result set is

generated.

On the following page you will find examples of search strategies. The list of strategies is

not complete. A complete list of search strategies can be found in the documentation.

Basic Information -> Background Knowledge -> SQL Optimizer -> Search Strategy ->

List of all search strategies

 14

EQUAL CONDITION FOR KEY provides an efficient access path through "direct access"

to the base table.

The decision in favor of this strategy will already have been made at the time of parsing

because, independent of the data in the search conditions, no better search strategy is

possible.

 15

If a portion of the start of the primary key is specified in the WHERE condition, the strategy

RANGE CONDITION FOR KEY will be executed.

If the index and primary key cannot be used, the base table will be searched completely

(TABLE SCAN).

An intermediate result set is not generated.

 16

The IN condition can be placed on each field of a primary key.

Only one IN condition is taken into account.

The primary key fields that precede the field with the IN condition may only be specified in

an EQUAL condition.

An intermediate result set is generated. The result set is sorted according to the primary

key.

As of version 7.4, the optimizer checks whether the RANGE CONDITION FOR KEY is

advantageous. This happens if the values in the IN condition are close to each other.

Example:

 SELECT *

 FROM zztele

 WHERE name IN ('Schaefer' , 'Schmidt')

There are additional names in the table that are located between the values 'Schaefer' and

'Schmidt'. There are additional names in the table that are located between the values

'Schaefer' and 'Schmidt'. Thus, using this search condition, records are also included that

 ‹#›

do not belong to the results set. However, the strategy is more favorable since

only one start and stop key have to be determined.

 17

If a subquery returns primary key values, EQUAL CONDITION FOR KEY or RANGE

CONDITION FOR KEY is used on the base table. The result set is sorted according to

primary key values.

An intermediate result set is generated.

 18

If a SELECT statement only addresses columns that are also contained in an index

(SELECT list, WHERE clause), then only this index will be accessed for the execution of

the command.

Advantage:

 In some cases, significantly fewer pages that have to be searched

 Optimal usage of sorting of secondary and primary keys in the index

 No additional access to the base table

 No determination of access costs (only for the join)

Exceptions:

 No index SCAN if the index is larger than the base table

 Efficient primary key strategy via the base table

The old name for parameter IndexlistsMergeThreshold was OPTIM_INV_ONLY.

 19

Efficient access path for fields with greater selectivity

When determining the strategy, additional costs (index_overhead) for accessing the base

data via the index are taken into account.

The optimizer also opts for the strategy EQUAL CONDITION FOR INDEX, if all fields of a

multiple index in the WHERE condition are specified with an equality condition.

An intermediate result set is not generated.

 20

The result set is sorted according to the secondary key sequence. If only values from the

index are queried, the Only Index strategy is used.

An intermediate result set is generated.

 21

The result set is sorted according to the primary key.

Using the additional strategy TEMPORARY INDEX CREATED, the primary keys are sorted

in a merge list. The optimum cache usage is guaranteed using access to the base data in

the order of the primary keys.

The maximum size of the merge lists that are generated can be configured using the

parameter IndexlistsMergeThreshold (OPTIM_MAX_MERGE).

An intermediate result set is not generated.

 22

A secondary key can be taken into account for an IN condition. Only one IN condition is

taken into account.

The secondary key fields that precede the field with the IN condition may only be specified

in an EQUAL condition.

The result set is sorted according to the secondary key.

The Only Index strategy can be used.

An intermediate result set is generated.

 23

During an INDEX SCAN, all entries are read via the index in the order of the secondary

key. An intermediate results set is not generated.

As of version 7.4, NULL values are also included in single indexes. Thus, this strategy can

be used on all indexes.

If a Table Scan is to be carried out for an ORDER BY because no index can be used, an

intermediate result set is generated.

 24

Nested OR terms are analyzed down to the third level.

The strategy search is only carried out if there is no adequate strategy on the highest level.

If the costs of the strategy search exceed the costs determined for the highest level, the

strategy search is discontinued.

An intermediate result set is generated.

Within the SAP environment, similar statements are also generated by SELECTS with

RANGES.

 25

 26

The costs for a join are based on information about the value distribution.

In general, the costs of a join decrease as the number of joined columns increases.

For joins, an intermediate result set is always generated.

 27

 28

 29

Joins are mostly executed with the Nested Loop method. In doing so for the single join

transitions no result sets are built. Only the final result is fully created before the first row is

delivered.

As of version 7.7 there is no more possibility to choose between Sorted Merge or Nested

Loop by a parameter setting (JOIN_OPERATOR_IMPLEMENTATION).There are only

marginal disadvantages concerning CPU usage for Nested Loop with the current

algorithms. Therewith the Nested Loop can deliver the result faster and with the use of less

resources.

 30

The hash join strategy is employed when a join transition to a small table is done and it is

probable that a large number of records needs to be read from the small table.

In this case it would be faster to import the small table once and generate a temporary has

table. Searching for the keys in a hash table is faster than searching via the B* tree of the

table.

The strategy "TABLE HASHED" identifies the join via a hash table.

The old parameters influencing this behaviour were MAX_HASHTABLE_MEMORY and

MAX_SINGLE_HASHTABLE_SIZE.

 31

MaxDB supports the following hints, the meaning of which can be extracted from SAP note

832544:

KEYACCESS, KEYRANGE, INDEXACCESS[(<INDEXNAME>)] , KEYSCAN,

INDEXSCAN, INDEXRANGE, BUILDRESULT, FETCHRESULT, DISABLE_INVONLY,

IN_STRATEGY, SUBQ_STRATEGY, TRACE, ORDERED, COORDINATOR_JOIN,

OPERATOR_JOIN, PARALLEL_SERVER(<unsigned integer>), NOACCESSPATH,

ACCESS=<access hint list>, BUFFERSIZE, QUERYREWRITE_OP ,

QUERYREWRITE_STMT, QUERYREWRITE_NO

 32

Query Rewrite investigates the statement after the syntactical analysis.

Query Rewrite does a semantical analysis and rebuilds the statement if rules can be applied. Several rules

can be applied.

Some rules (f.e. DistinctPushDownTo) do not change the statement itself but the internal Query Graph. This

allows tp apply other rules.

The execution of some rules does not rearrange the statement but provides some additional information. The

rule DistinctPullUp deposits the information that all rows are unique. It is not necessary for the execution of the

statement to create an internal result set to guarantee the uniqueness of the result rows then.

The rearranged statement with the possible execution plans is stored in internal format within Shared SQL or

the catalog cache, respectively.During the execution the optimizer determines the best execution plan for the

rearranged statement.

Query Rewrite works rule-based. Statistical data is not taken into account. There is no evaluation of data.

 33

You can influence the use of Query Rewrite by setting the parameter ENABLEQUERYREWRITE.

Furthermore you have the possibility to switch single rules on or off. Use an UPDATE statement on table

QUERYREWRITERULES to set the attribute ACTIVE for the corresponding rule to YES or NO.

 34

Mit Hilfe von EXPLAIN QUERYREWRITE können Sie das Statement ermitteln, wie es nach der Rewrite-

Bearbeitung zur Ausführung kommt.

Die View SYSDBA.MONITOR zeigt an, welche Regel seit dem Start der Datenbank wie oft aufgerufen wurde.

 35

As of version 7.5, MaxDB requires statistics data only for joins and selects with a restriction of the records in

the result, such as „WHERE ROWNUM <= n“.

For the table itself, Update Statistics only determines data if the current size information is not already in the

file directory. This does not apply to table created with databases of versions < 7.6 and for which no size

information could yet be determined in the file directory.

Update Statistics determines statistics data for all columns that are primary key or index columns. It also

determines the statistics data for all columns outside of the primary key and the index, if statistics are

available.

When the Optimizer discovers tables with outdated statistics data, it enters them in the table

SYSUPDSTATWANTED. The DBM command sql_updatestat_per_systemtable executes Update

Statistics for all tables listed in SYSUPDSTATWANTED.

The DBM command executes Update Statistics for all tables in the database.

Update Statistics imports the data for a table from all data volumes in parallel. This makes it very speedy.

As of version 7.6, the sampling procedure in the standard uses a new algorithm for calculating the statistics

data. You can determine the algorithm to be used with the parameter UPDATESTAT_SAMPLE_ALGO.

The new algorithm generates more accurate statistics with fewer records read.

The programs "xpu" and "updcol" are no longer available as of version 7.6.

 36

For tables that grow and shrink very quickly, such as spool tables, for example, it is a good

idea to set the sampling rate to 0. This prevents Update Statistics from being requested

and executed for these tables.

For tables that were created with versions < 7.6, the counters for size data in the file

directory after upgrade to version 7.5 are not yet available. You can determine the

counters with a CHECK DATA in the ADMIN state or with CHECK TABLE WITH SHARE

LOCK. CHECK TABLE sets a share lock for the duration of the check.

After the upgrade from versions < 7.6 to versions >= 7.6, all table names are transferred to

the table SYSUPDATECOUNTERWANTED. With every restart, the database attempts

to determine the counters for all remaining tables in SYSUPDATECOUNTERWANTED

for the file directory. A share lock is set on a table during processing. Determination of

the counters is immediately terminated for a table if the share lock causes a lock

collision.

With the following command dbmcli starts an Update Statistics with sampling for all tables

 ‹#›

of one schema:

sql_updatestat SAP<SID>.* estimate

 37

The Optimizer only uses the statistics data for tables only if the counters for size data are

not in the file directory.

 38

The values for TREENINDEXSIZE, TREELEAVESIZE and LOBSIZE are entered in KB.

For tables, ENTRYCOUNT shows the number of records per table. For indexes,

ENTRYCOUNT shows the number of different values for the secondary key.

 39

An overview of general restrictions can be found in the reference handbook in the

Restrictions chapter.

 40

