
 1

 2

Kernel parameters are divided into three classes:

 General

These parameters are set by database administrators.

 Extended
These parameters are set in consultation with MaxDB Support or by implementing notes from the

database administrator.

 Support

These parameters are set by MaxDB Support or the developers.

Before a MaxDB version comes out, it is programmed to calculate the optimal values for

the respective operating system platform.

 3

The parameter file is stored in the file system in binary format.

The Database Manager's client tools enable you to read and change parameters.

With dbmcli, parameters can be changed directly or in a parameter session.

Above you see a few examples of commands for making changes directly.

If parameters are changed within a session, a Commit makes all the changes valid while

an Abort makes them all invalid.

Use the commands:

 param_startsession starts a parameter session

 param_commitsession ends the parameter session and saves the values

 param_abortsession ends the parameter session without saving it

 param_getvalue displays a parameter value

 param_put changes the value of a parameter

 param_restore activates old parameter version

The dbmcli command “help param” displays more commands.

 4

As of Version 7.6, MaxDB offers the possibility of changing parameter values in online

operation.

In general, you can change status or counter values online. Some newly introduced

parameters can be changed online although they influence the process or memory

structure of the database. In the example the execution of Query Rewrite is activated.

MaxDB development is pursuing the goal of making it possible to change all parameter

values online.

As of version 7.7.03 the parameter names were consolidated. Therewith most parameters

got a new name without containing underlines. The legibility of parameter names is

improved by the use of upper and lower case characters. You can read and set the

parameters by using the old names. The command param_directgetall only shows the new

parameter names. The view ACTIVECONFIGURATION shows old and new parameter

names.

 5

The parameter file is in the directory <IndepDataPath>/config.

The name is identical to the name of the instance. If changes occur, the old file is copied to

<instance>.<no> .

You use the dbcmli command param_gethistory to display the parameter history. In the

SAP system, you can display the parameters in transaction DB50.

In data backups (complete or incremental), the contents of the parameter file are written to

the backup medium.

 6

In transaction DB50 you can view the list of all parameter changes, sorted according to

the change date.

The system displays a list of the database parameters changed at this point in time, and

their previous and new values.

Parameters that are no longer used by the database as of a particular date are
assigned <<parameter inactive>> as a new value.

The parameter history data is logged once a day by a collector. If you have changed

database parameters, these changes are only displayed in this output after the collector

has run. A current display of the parameter history is offered by the Database Studio.

 7

Calculation formulas, short texts and help texts for the parameters are found in the file <instroot>/env/cserv.pcf.

The following properties can be assigned to parameters:

Property Description Values

CHANGE Parameter can be changed YES | RUNNING | NO

INTERN Value is not in the parameter file YES | NO

MANDATORY Parameter must have a value YES | NO

CLEAR DB copy: Parameter is not copied YES | NO

DYNAMIC Automatic numbering (e.g. DATAVOL_?) YES | NO

CASESENSITIVE upper/lower case (contents) YES | NO

OVERRIDE Parameter value may be changed YES | NO | HIGHER

DEVSPACE Volume Parameter YES | NO

MODIFY Parameter may be changed after generation of instance YES | NO

CLASS Classification General, Extended, ...

DEPRECATED Old parameter name

DISPLAYNAME Parameter name displayed in DBMGUI <value>

VALUESET Permitted values <values>

MAX Maximum parameter value (numeric) <value>

MIN Minimum parameter value (numeric) <value>

 ‹#›

Do not change the file cserv.pcf under any circumstances unless instructed to do so by MaxDB
Support or MaxDB Development.

 8

 9

These parameters are, in part, performance relevant, but they are not tuning parameters,

strictly speaking. They are not discussed further here.

 10

 11

 12

The size of the I/O buffer cache depends on the size of the database, the type of use, the size of the main
memory and the number of users working simultaneously.

The I/O buffer cache is divided into the converter cache and the data cache. The size of the converter cache
grows and shrinks with the number of used data pages. The system view CONFIGURATION displays the
size of the different areas:

SQL Statement: SELECT * FROM CONFIGURATION
 WHERE DESCRIPTION IN ('Converter size', 'Datacache size')

The converter cache hit rate is always 100%. The data cache hit rate should be over 98%.

Values: Default: 10,000 pages
 Min: 800, Max: 2,147,483,640
 SAP system: > 30.000
 Online change NO

The data cache hit rate can be determined as follows:

 SQL statements
 SELECT * FROM MONITOR_CACHES
 MONITOR INIT executes a reset

 Database Studio tabulator Caches in the administration window)

 DBAnalyzer
 Displays the hit rate for a defined period of time.

System swapping occurs if the data cache is too large. System swapping is generally more costly than
removing data pages from the cache.

 13

DataCacheStripes increases the amount of work done in parallel on the data cache.

The data from the data cache are striped across the data cache regions. Each region

has its own semaphore.

Each data page in the data cache is assigned to a region. Multiple users can change

pages in different regions at the same time.

Values: Default: 8

 Min: 1, Max: 1024 (up to version 7.6.03.06: 64)

 The number of regions is calculated depending on the size of the

 parameter CacheMemorySize.

 Online Change: NO

If collisions occur during access to the data pages of a region, this bottleneck can be

remedied by increasing the number of regions.

If very small regions are defined this may lead to a bad hit ratio in the cache when one

region is used more often because of frequently accessed pages than others.If very big

regions are defined the search in hash lists of the LRU management may have a

negative impact on the performance of the system.

 14

It is presumed that the lion's share of the data read to the data cache in a table scan

cannot be used again. The initial value disburdens the cache of such data and thus favors

other commands. But this can lead to long delays for the user who is performing the table

scan as he may frequently have to displace pages from the cache.

The 'YES' setting can be advantageous if, for example, multiple smaller tables in their

entirety are to be held in the data cache.

Values: Default: NO

 YES: The whole data cache is used for scans.

 NO: Only the last part of the data cache is used for scans.

 Online change: YES

The LRU list (Least Recently Used) is a concatenation of data pages. The pages used

most recently are generally at the front.

 15

With CREATE INDEX, server tasks read the data pages of the table from the volumes in

parallel. The data required for the index are collected in temporary B* trees. The B* trees

are then combined into a sorted index in a series of merge steps.

The speed of CREATE INDEX increases when as many temporary B* trees as possible

are being used. This is only the case, however, if the B* trees can be held in the data

cache.

If the index pages of the B* trees cannot be held in the cache, the performance of

CREATE INDEX can worsen significantly.

The value for MaxTempFilesPerIndexCreation should not exceed CacheMemorySize / 3.

Values: Default: Depends on Cache MemorySize if condition

 MaxTempFilesPerIndexCreation <= CacheMemorySize / 3 is fulfilled
 Allowed: 0, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072

 Online Change: YES

 16

The parameter ConverterStripes is used for setting the number of regions through which

accesses to converter pages are synchronized. Collisions can occur in online operation if

the parameter is too small and many users request new page numbers at the same time.

The converter map is used to access a converter page. It contains an entry for each

converter page. Each entry is assigned to a region. Multiple users can change pages in

different regions at the same time.

Values: Default: The value is calculated depending on the defined size of the

 database.

 Min: 1, Max: 64

 Online change: NO

If collisions occur during access to the data pages of a region, this bottleneck can be

remedied by increasing the number of regions.

 17

The catalog cache holds user-specific data from the database catalog. At the beginning of the session, each user

task receives a catalog cache; the size of this cache can be set with the parameter

TaskSpecificCatalogCacheMinSize (CAT_CACHE_MINISIZE; no separate slide). If necessary, the size of the

catalog cache is increased during the session until the value CAT_CACHE_SUPPLY is reached for the system as

a whole.

Memory for the catalog cache of a user task is only requested from the operating system when required and is

released when the session ends.

The memory used by a particular user can be queried:

 SELECT * FROM SESSIONS

The lower limit for the hit rate depends largely on the application. The parameter value is too small if the total

allocated memory for the individual users reaches the parameter value.

The data cache hit rate should be over 85%.

Values: Default: 32

 If { (MaxUserTasks + 1) / TaskSpecificCatalogCacheMinSize * 8192 } > TaskSpecificCatalogCacheMinSize

CAT_CACHE_SUPPLY = (MaxUserTasks + 1) / TaskSpecificCatalogCacheMinSize * 8192

 Restriction:

 _TaskSpecificCatalogCacheMinSize * 8192 / MaxUserTasks + 1 <= CAT_CACHE_SUPPLY

 No online change

The name of this parameter has not been changed in version 7.7.03 as the meaning will change soon.

 18

The catalog cache stores SQL statements on a by-user basis. That makes synchronization
more efficient because parallel accesses within session contexts are not possible. If the same
statements are executed in different user sessions, however, they are stored multiple times in
the main memory. For that reason, it is only the prepared information and not the texts of the
statements that is stored. This compromises monitoring.

In the shared SQL cache, the statements and their texts are stored globally for all user
sessions. Additionally, various counters - for example the number of executions and the
number of current executions - are stored.

You can get the statements and the corresponding counters:

 SELECT * FROM CONNECTEDUSERS

With the following statement, MaxDB displays the current SQL statements:

 SELECT * FROM COMMANDSTATISTICS WHERE CURRENTEXECUTECOUNT <> 0

In online operation, shared SQL can be switched on and off dynamically. Changes are active
for all new user sessions.

 Maintain monitor counter: DIAGNOSE ANALYZE COUNT ON/OFF

 Some counters are not maintained in the standard setting.

 Online change: Yes

 19

The view COMMANDCACHESTATISTICS displays monitor data of the cache management for
shared SQL:

 SELECT * FROM COMMANDCACHESTATISTICS

The view CACHESTATISTICS displays the hit rate in the shared SQL cache.

 SELECT * FROM CACHESTATISTICS WHERE NAME LIKE 'COMMAND%‘‚

Values (in KB):
 Default: 262144 (256 MB)
 Min: 16384 (16 MB)

 Max: 8388608 (8 GB)
 Online change: No

When the cache no longer has enough space for a new statement, an LRU mechanism looks
for the 20% of statements which have not been used for the longest time.
The mechanism then deletes the statements in this selection for which no parse ID still exists.
Generally these are statements for which no cursor exists in the application any longer. For
statements for which applications still have a parse ID, the mechanism only deletes the parse
information. It stores the statement in a temporary file within the database. If the parse ID is
used again by the application, the database kernel copies the statement back to the shared
SQL cache and recreates the parse information. If the LRU mechanism cannot provide any free
space in the cache, then the cache management enlarges the memory area by 2 MB.

When the maximum value for the size of the Shared SQL cache has been reached, statements
can still be formatted in the catalog cache. This does lead to higher execution costs, however.

 20

Sequences are database objects whose value automatically increases or decreases with

each access (NEXTVAL).

Value and management information about the sequences is kept in the sequence cache for

quick access.

Values: Default: 1

 Min: 1, Max: 2147483640

 SAP-System: 1

 Online change: NO

SQL statements

 SELECT * FROM MONITOR_CACHES

 MONITOR INIT executes a reset

 21

The log queue serves to prevent load spikes and to enable larger block sizes when writing

logs.

With applications with a high logging rate, the log queue can overflow and thus cause wait

times without COMMIT statements. If this occurs frequently, the log queue can be enlarged

to prevent unnecessary wait times for transactions that have not yet been completed.

The first thing to check is the I/O times for writing the log pages. Poor I/O times increase

the chances of log queue overflows. They cause the database to have poor response

times for write transactions.

Applications that almost exclusively read require only a small value.

Values: Default: 50 pages
 Min: 8, Max: Size of the log area

 SAP systems: > (2 * MaxUserTasks and >= 200)

 Online change: No

The system view LOGQUEUESTATISTICS displays the number of log queue overflows

 SELECT * FROM LOGQUEUESTATISTICS

 22

As of version 7.6, MaxDB supports multiple log queues. This prevents collisions during

access to the memory areas.

In the standard, the number of log queues is the same as the value for MaxCPUs. Thus

every UKT with user tasks writes to its own log queue. So users can no longer collide

with each other, but only with the log writer.

You can enlarge the value of parameter LogQueues in online mode up to the size of

MaxLogQueues.

Values: Default: MaxCPUs

 Min: 1, Max: MaxCPUs

 Online change: YES

 23

If multiple log partitions are used the configuration of one logwriter task per UKT is suitable. Thus the

database can prevent collisions during the access on the log queue.

Werte: Default: 1

 Min: 1

 Online change: Nein

This parameter was introduced temporarily to support multiple log partitions. It will be replaced by an

automatic configuration in future.

 24

Values: Default: 4 (this amounts to 32 KB with 8 KB Pages)

 Min: 4, Max: 32

 Online change: NO

 25

When operating in an SMP environment with multiple CPUs (MaxCPUs > 1), collisions can

occur due to parallel accesses to the log queue.

Such collisions can be minimized - especially for larger transactions - by creating a

transaction-dependent buffer for redo log entries.

Values: Default: 0 Transaction-dependent buffers for redo log entries are not used

 >0 Size per transaction-dependent buffer in bytes

Online change: NO

 26

Garbage collectors release history files which contain undo information that is not needed any longer.

If in a system several garbage collectors are configured then it is possible to cleanup also several history files

simultaneously.

Additional garbage collectors do not influence the CPU load of the system as they are all working within the

same UKT. Many garbage collectors, however, may increase the parallel I/O load in the system. It is

recommended to set the parameter to 10.

Werte: Default: 1

 Online change: NO

 27

MaxSQLLocks specifies the maximum size of the lock lists for row and table locks.

MaxSQLLocks is dependent on the isolation level, the number of simultaneously active users and the

applications.

If MaxSQLLocks is exhausted, statements that request locks are rejected

(-1000 "TOO MANY LOCK REQUESTS").

MaxSQLLocks should be increased if the following regularly occurs:

 LOCK LIST ESCALATIONS occur or

LOCK LIST MAX USED ENTRIES is equal to MaxSQLLocks or

LOCK LIST AVG USED ENTRIES is nearly equal to MaxSQLLocks

Alternatively, the number of write transactions can be reduced.

Values:

 Initial: 2500

 Minimum: 500

 MaxSQLLocks >= (((TransactionLockManagementStripes + TableLockManagementStripes +

RowLockManagementStripes) * 100) DIV 3

 SAP systems: >= 150.000

Excessive values for MaxSQLLocks lead to longer search runs in the lock lists.

The criteria for increasing MaxSQLLocks mentioned above can be queried:

 SQL statements:
 SELECT * FROM SYSDBA.LOCKLISTSTATISTICS

 DBAnalyzer

 SAP system: transaction DB50

 28

SQL locks are entered in several lists:

 Transaction view

 Table view

 Row view

To prevent collisions of parallel accesses, several lists are used for each view.

Values: Initial: 8
 Default: 8

 Min: 1, Max: 64

Online change: NO

 29

If all the lock entries of the lock list are in use, their number can be increased by getting

memory from the lock pool. This is done with the portion size parameter

InternalLockStructureEntries.

If the value is too large, eventually too much unneeded memory from the lock pool that

could be used elsewhere will be tied to the list (upper limit via MaxSQLLocks).

If the value is too small, memory may have to be retrieved several times in quick

succession, which in turn can lead to collisions in the LOCKPOOL region.

Collisions can be queried with:
 x_cons <SERVERDB> show regions

 dbmcli –d <dbname> -u <dbmuser,passwd> -n <server> show regions

 SELECT * FROM SYSMON_REGION WHERE REGIONNAME = 'LOCKPOOL‚

 DBAnalyzer

Values: Default: 100

 Min: 10, Max: 100000

 Online Change: NO

 30

A higher value than the initial value leads to significant costs. It is only advisable if an

application causes serious problems with deadlocks and this cannot be remedied on the

application side.

Values: See above

 Online change: YES (as of version 7.6.03)

 31

AWE stands for Address Windowing Extensions.

The AWE memory is used exclusively for the data cache.

The database automatically generates a mapping table in the data cache. The parameter

CACHE_SIZE must be set to a high enough value that there is enough space for the

converter and the mapping table.

Limit the size of the used AWE memory with the parameter MEM_ENHANCE_LIMIT.

AWE is only used with Windows.

Attention: AWE is no longer supported in versions >= 7.6. Before you upgrade to a higher

version than 7.5 you should change to a 64 bit Windows operating system, if the

application needs such a large cache to run performantly.

Values: See above

 Online change: No

 32

If the parameter USE_MEM_ENHANCE is set to YES, the parameter

MEM_ENHANCE_LIMIT should be set to a value > 0 to prevent memory bottlenecks with

other applications or databases.

Values: Default: 0

 Min: 0, Max: 2147483640

 Online change: NO

 33

 34

Enlarging the communication packet accelerates data transfer for mass commands and

enables longer SQL statements, but it also requires more memory.

Values: Default: 131072
 Min: 16,384, Max: 131.072

 SAP systems (ASCII): >= 36864 (see OSS note 140739)

SAP systems (UNICODE): >= 65536

SAP BW: >= 66560 (see OSS note 545385)

 SAP systems (from version 6.40) = 131072

 Online change: NO

Typical errors if CommandBufferSize is too small:

 -743 Input string too long

 -1104 Too complicated SQL statement

 -1114 Communication packet too small

 35

UKTs can themselves call I/O operations if

 the parameter EnableSynchronousTaskIO is set to "NO" and

 only one user task in the UKT is not in "Connect Wait" status or only one task is running

in a UKT (e.g. log writer)

The I/O request is then not put in a queue and processed by the I/O thread.

The individual I/O operation can be executed more quickly if the UKT does not need to

request an I/O thread.

If a user task executes an I/O request itself, other tasks cannot work until it is finished. The

UKT is blocked and waits for the reply to the I/O request. This option can compromise

performance in parallel operation.

Values: Default: NO

 Online change: YES

 36

The pager tasks read changed pages from the data cache and put them in the queues of

the I/O threads. In general, they do not execute the I/O request themselves (see

parameter EnableSynchronousTaskIO).

With an online restart, the pagers read the converter in parallel.

Values: Min: 1, Max: 64
Default: Maximum of DataCacheStripes, ConverterStripes and MaxDataVolumes

Online change: NO

 37

If the MaxSavepointTimeInterval value is increased, the number of savepoints within a time

unit - and thus the workload associated with it - decreases. This can, however, prolong the

time required for a restart after a system crash.

Values: Default: 600
 Min: 0, Max: 100.000

The time period calculation in this case uses the end of the prepare phase as the end of

the last savepoint.

SAP does not recommend changing the value of this parameter. If desired, you can

influence the behavior of savepoints with the parameters DataCacheIOAreaSize,

DataCacheIOAreaFlushThreshold and DataCacheLRUAreaFlushThreshold.

 38

Occasionally savepoints can lead to undesired I/O load spikes as all the changed pages in

the data cache are written to the data volumes.

These I/O spikes can be mitigated if changed pages are written in parallel prior to the

savepoint. This activity is done by the pagers, whose behavior can be controlled using the

parameters described in the following.

Nevertheless, the overall I/O load rises in this case as pages that were changed several

times before the savepoint also have to be written several times.

Only those pages from a part of the cache, the DW-IO-AREA, are written. The size of this

area is controlled by a parameter.

The LRU list (Least Recently Used) is a concatenation of data pages. The pages used

most recently are generally at the front.

 39

This parameter defines the area of the data cache in which the pagers work between

savepoints.

Pagers write only those changed pages out of the cache that are at the back end of the

LRU list, that is, the area defined by DataCacheIOAreaSize.

A large value reduces the savepoint I/O load more, but increases the current I/O load.

Values: Default: 50

 Min: 10, Max: 90
 Online change: NO

 40

This parameter specifies an event at which the pagers become active.

A large value reduces the savepoint I/O load more, but increases the current I/O load.

Values: Default: 50

 Min: 30, Max: 80

 Online change: NO

 41

This parameter specifies an event at which the pagers become active.

The purpose of this mechanism is to ensure that there are always enough free pages at

the end of the LRU that user tasks are not forced to displace pages from the data cache.

Values: Default: 25

 Min: 10, Max: 80

 Online change: NO

 42

Pagers can combine data pages and write them with an !/O operation (vector I/O).

If for a table the cluster flag is switched on the database builds groups of pages that belong

together according to the B* tree chains before writing it to the disks. Thus data pages are

kept together logically to improve the use of prefetch algorithms of the storage systems

during scan operations. The cluster flag is set with the CREATE TABLE or ALTER TABLE

statement.

This parameter also influences the block sizes for read / write operations to data backups.

Backup templates provide a mechanism to adapt block sizes used for writing to the backup

media.

If the cluster flag is used for tables the block size for writing a backup should be set

according to the DataIOClusterSize or should be a multiple of it. Otherwise the clusters

would be dissected during restore.

Values:

Default: 64

 Min: 4, Max: 128

 Online change: No

 43

MaxDB builds clusters for tables with the cluster flag to improve read performance for scans.

If blocks are written for cluster tables the pager tasks are looking for logically clustered blocks. Logically

clustered blocks are those with successive cluster keys. The cluster key is defined by the primary key or

another logical key which must not be unique on application side (f.e. time characteristic). Pager tasks write

those blocks adhesively to the data area.

A cluster builded by pager tasks is only written to a separate FBM section if the number of blocks within the

cluster is at least ClusterWriteThreshold % of DataIOClusterSize and a free section in the data volumes is

available. During backup and restore the clustering is not lost. If the percentage falls below

ClusterWriteThreshold and no more free section is available the cluster is splitted and written to different free

blocks.

Werte: Default: 80%

 Min: 0, Max: 100

 Online Änderung: Ja

 44

If the database is filled to a high amount there is increased risk of writing too small clusters because there are

no more free FBM sections for bigger clusters. So the scan performance of the system will be restricted.

FBM sections are released if they are only filled with a few blocks and if the condition for parameter

ClusterCompressionThreshold is fulfilled.

At the end of a savepoint it is checked by pager tasks if there are FBM sections with a low filling grade. Server

tasks read the affected blocks to the data cache and mark it as modified. The blocks are written to other

positions in the data area at the latest with the next savepoint. The FBM sections are now free for large table

clusters.

Values: Default: 10%

 Min: 0, Max: 50

 Online Change: YES

 46

Pager tasks also build clusters for LOB values if the parameter UseLobClustering is set to YES.

The storage of blocks for LOB data is also influenced by the parameter ClusterWriteThreshold.

Values: Default: NO

 Online Change: YES

 47

With version 7.7 the I/O interface to the operating system has been reimplemented. Version 7.7

uses different parameters than version 7.6. The new I/O system in version 7.7 has the following

essential advantages:

 No direct assignment of a I/O worker thread to a volume. This implies a better scalability of I/O.

 I/O worker threads can be started on request. This prevents the use of unnecessary resources.

 The synchronization of accesses to the I/O queues has been changed. The access is done

collision free. This additionally improves the scalability of I/O.

 Prioritization of special I/O requests. Dedicated jobs within the database (f.e. CHECK DATA) can

run with lower priority. Online operation is stressed less.

 Tasks can send I/O requests asynchroneously to the I/O system. They don‘t have to wait until the

I/O request has been fulfilled but can continue their work.

 Support of multiple database instances.

 48

The parameters shown above were introduced with the multiple database concept. This

allows the use of several MaxDB databases within one instance. The parameters can be

used to restrict I/O resources per database within one instance.

If you use a database per instance then it is not necessary to adapt these parameters. On

request the database can start additional I/O worker threads. It is possible to restrict the

number of I/O worker threads by setting the parameter MaxIOPoolWorkers.

Multi DB concept is not yet available in version 7.7.

 49

By defining the number of queues per volume and per priority you can influnce the

priorities of I/O for certain requests.

VolumeIOQueuesForLowPriority:

 Default: 1

 Min: 1

 Max: 10

 Online Change: NO

VolumeIOQueuesForMediumPriority:

 Default: 9 (Windows: 3)

 Min: 0

 Max: 20

 Online Änderung: NO

VolumeIOQueuesForHighPriority:

 Default: 0

 Min: 0

 Max: 10

 Online Änderung: NO

 ‹#›

You can watch the states of current I/O requests in the system by the use of the

console (x_cons) and the system view IOJOBS.

 50

As soon as there are more than IOQueueFillingThreshold requests in the queue of an I/O

thread the system tries to put each additional I/O request to another I/O queue.

Values: Default: 1 (recommended)

 Min: 0

 Online change: YES

If there are not enough I/O worker threads available to handle all filled queues then the

system automatically starts an additional thread.

 51

When reading larger LOB values, it is a good idea to continue reading asynchronously

from the volumes while sending a read package to the application. This is done by a server

task if the length of the LOB value to be read exceeds the value of the parameter

ReadAheadLobThreshold.

Values: Default: 25

 Min: 2 * CommandBufferSize / 8196 Max: 262144
 Online change: YES

 52

You can get "bad indexes" with the following statement:

Select * from INFO_BAD_INDEXES

Use the following call to recreate the indexes:

dbmcli –d <database_name> -u <dbm_user>,<password> –uSQL <userid>,<password>

sql_recreateindex

Values: Default: NO
 Online change: NO

 53

In its current implementation, the MaxDB converter provides 4 bytes (= 32 bits) for

addressing data blocks. In the standard setting, one byte (= 8 bits) is used for the volume

number and 3 bytes (= 24 bits) for the block position in the volumes. Thus with 8 KB -

pages, the maximum size for MaxDB instances is 32 TB (2^32 * 8KB).

You can configure the number of bits that the converter management uses for addressing

the volumes.

That enables you to configure the database so that it supports larger volumes, for

example. If the database is configured to support larger volumes, the maximum number of

volumes sinks.

Values (calculation for 8 KB pages):

Default = 8 max. 256 volumes, max. size 128 GB

Min: 6, Max: 12

Default = 6 max. 64 volumes, max. size 512 GB

Online change: No

Change the value for ConverterVolumeIdLayout only after consultation with MaxDB

Support.

 54

From version 7.5, in the standard setting MaxDB sets a lock on open volumes that are in

the file system. You can change this behavior using the parameter UseVolumeLock.

Values: Default: YES The database requests a lock when a volume is opened.

Online change: NO

 55

If the parameter UseFilesystemCacheForVolume is set to NO then the database opens the volumes by using

the flag O_DIRECT.

If the parameter UseFilesystemCacheForBackup is set to NO then – for a backup - the database opens the

volumes and backup media (in case of files) by using the flag O_DIRECT.

The database kernel cannot open the files in the volumes upon starting if one of the parameters is set to NO

although the option O_DIRECT is not supported by the file system. The mount options should force direct I/O

for the file system in those cases.

Please additionally have a look at note 993848 which gives recommendations concerning mount options for

different file systems. Note 977515 describes problems during backup and provides special

recommendations for the settings of these parameters.

Attention: By renaming the parameter it now got the inverse meaning.

Values:

UseFilesystemCacheForVolume

 Default: NO (Linux), YES (UNIX)

 Online change: NO

UseFilesystemCacheForBackup

 Default: YES

 Online change: NO

 56

 57

This parameter serves to inform the database kernel that multiple CPUs can be used.

At the same time, it allows the database system to restrict CPU usage. Such a restriction

only applies to UKTs that contain user tasks. Other UKTs continue to access any number

of CPUs even if the value for MAXCPU is reduced.

Generally speaking, MAXCPU indicates the number of CPUs simultaneously subject to

intensive usage.

The value for MAXCPU strongly influences the distribution of database kernel tasks to the

operating system threads (parameter TaskCluster).

If the computer is used exclusively as a database server, MaxCPUs should correspond to

the number of CPUs the computer has; otherwise the value should be reduced to free up

some CPUs for other applications.

Values: Default: 1

 SAP central system: 1/3 - 1/5 of available CPUs

 Dedicated database server with up to 7 CPUs: 100% of available CPUs

 Dedicated database server with more than 7 CPUs: 100% of available CPUs -1

 Online change: NO

 58

Tasks between two semi-colons are combined to make a thread.

Meaning of the example:

Trace writer, log writer und utility task each run individually in their own thread.

Up to 2000 (practically all) server tasks are combined in a single thread.

Garbage collectors and event tasks run together in a thread.

Timer and up to 100 pagers run in one thread.

The number of threads containing user tasks is limited to MaxUserTasks/2.

"equalize":

User tasks are distributed as evenly as possible across different threads.

"compress":

The maximum possible number of user tasks (in this case 20) is processed in a thread

before a new thread is started.

"allinone":

All tasks run in one thread.

Online change: NO

Warning:

Do not change these parameters without the explicit recommendation of MaxDB

Support. Any changes would be reset the next time the parameters are calculated.

 59

Load balancing enables optimal exploitation of all threads and thus of all the CPUs

allocated to the database.

After the time interval of LoadBalancingCheckLevel seconds, the database kernel

searches for a task to move to another UKT. This is helpful when one UKT has a

particularly heavy load and another UKT has a smaller load.

Between the checks after LoadBalancingCheckLevel seconds, statistics are collected. The

greater the time for gathering the data, the more meaningful the UKT load statistics that

result. With smaller values, the shifting that occurs may not be optimal.

Load balancing is particularly useful for liveCache instances. These often run very CPU-

intensive LCA routines over long periods. Multiple LCA routines should not work

sequentially on one CPU if another CPU is free.

In OTLP operation, unbalanced load distribution among the UKTs is usually due to poorly-

optimized statements with high CPU loads for a single job. For this reason, such

statements should be identified and optimized before load balancing is employed.

Values: Default: 0

 Min: 4, Max: 600

Online change: NO

 60

To assess the load on a UKT, the database kernel determines the time in which the thread

is active.

The parameter LoadBalancingWorkloadThreshold indicates, in percent, the minimum

difference between the CPU loads of two threads above which tasks are shifted.

From version 7.5, the database console provides information about tasks that have been

moved:

 x_cons <dbname> show moveinfo

 x_cons <dbname> show t_move t<taskid>

 dbmcli –d <dbname> -u <dbmuser,passwd> -n <server> show …

Values: Default: 10

 Min: 0, Max: 99

Online change: NO

 61

Moving tasks (task moving) is time-consuming. It should only be done when it is expedient.

Recorded time data for activities are considered equal if the difference between them does

not exceed a certain percentage. The parameter LoadBalancingWorkloadDeviation defines

this percentage.

Values: Default: 5

 Min: 0, Max: 50

Online change: NO

 62

With the standard setting, server tasks are assigned to a UKT. In systems with many data

volumes and fast I/O, the CPU load generated by the server tasks can lead to a bottleneck

within the thread.

In liveCache instances in particular, such a bottleneck can lead to poor log recovery

performance.

With the setting EnableMultipleServerTaskUKT=YES, server tasks are distributed to the

UKTs for user tasks. This can prevent a CPU bottleneck in the single UTK for all server

tasks.

When the server tasks are distributed among the user task UKTs, users have to share the

load per CPU with the server tasks. This can lead to compromised performance in online

operation, for example while a backup is in process.

Online change: NO

 63

The present example should clarify the process of accessing a critical region.

Task 11 processes an update of a data record. Before it can be changed, a record has to be locked.

The lock is entered in the lock management, that is, in the lock key list, which is determined for this record by

way of a hash algorithm.

During the change in the lock key list, values are changed and pointers set. While the change is taking place,

the lock key list is not consistent.

Task 12, on an SMP machine, could want to read an entry from the lock key list at precisely the same time

that task 11 is carrying out the change. The database does not allow this process because task 12 would be

reading from an inconsistent list. So task 12 has to wait until task 11 has completed the change.

The source code, which can only be run by one task at a time, is designated a critical region. Defining regions

enables synchronized access to resources that can be read or changed by multiple tasks in parallel.

Regions are only kept for a short time. The more tasks that want to access a region in parallel, the higher the

risk of poor scaling. Scaling can be improved by shorter critical regions. Scaling can also be improved by

shortening wait times and by defining multiple regions that allow parallel access (for example multiple lock

key lists).

The command

 x_cons <SERVERDB> show regions

 dbmcli –d <dbname> -u <dbmuser,passwd> -n <server> show regions

 shows which regions have been accessed how many times.

 64

Cooperative multitasking

Multitasking in MaxDB means "cooperative multitasking." There is no central entity responsible for

dispatching tasks. Tasks and threads independently decide on activation and prioritization using a number of

simple rules.

A user task stops if it has nothing to do (e.g. it is waiting for an SQL statement from the application), has to

wait for I/O or cannot obtain a lock for a database object or a region. If the required lock becomes free (or

another of the reasons for the stoppage is removed), the task becomes executable again. It is then put in a

queue and can be activated at the next opportunity.

The illustration:

1. figure:

Task T13 is not executable because it is waiting for a lock held by T12. Task T12 is executable. Task T11 is

active and is currently requesting a lock held by T12.

2. figure:

Task T11 had to stop and is not executable. T12 became active and now releases the lock for which T13 is

waiting.

3. figure:

Task T13 is now executable and can become active if T12 stops and no other task is ahead of it.

 65

If, by chance, a task gets all the regions it requests and otherwise encounters no obstacles

(SQL locks or I/O) over a lengthy period of time, it could be blocking other tasks. The other

tasks cannot directly stop the running task. So when the number of successful region

requests reaches the value set for ExclusiveLockRescheduleThreshold, the current task

interrupts its work and triggers the search for another executable task within the UKT.

Small values result in more task changes. If not many users are working, this can result in

unnecessary task changes. The overall cost of task switching rises.

Larger values mean longer task runtimes and fewer task changes. But blockage by

"successful" tasks can occur.

This parameter is especially important for single-processor systems.

Values

Default: MaxCPUs = 1: 300

 MaxCPUs > 1: 3000

Min:100, Max: 100000

 Online change: YES

 66

Following a collision at a region, the task, being "executable", gets into the corresponding
dispatcher queue in order to let another task become active. After it has been
unsuccessful MaxExclusiveLockCollisionLoops times, the task enters into a special queue
for that region in order to receive preferential access to it.

Values:

Default: -1

With the default value -1, at the start the database kernel calculates:
 0 if MaxCPUs = 1
 100 if MaxCPUs = 2-7
 10000 if MaxCPUs > 7 (starting in Version 7.6.02)

MaxExclusiveLockCollisionLoops should not be > 0 , if MaxCPUs = 1 .

Online change: YES

The optimal setting depends on the number of processors and their speed. The optimal
value also depends on the speed of the operating system for IPC actions (semaphore,
mutex) and thread changes.

The parameters _MP_RGN_QUEUE, _MP_RGN_DIRTY_READ and
_MP_RGN_BUSY_WAIT have been removed with version 7.7. They haven‘t been
changed in the systems for a long time. The removal saves some efforts for dispatching.

 67

The UKT only becomes active again when a task becomes executable.

Online change: YES

 68

The threads UKT1 and UKT2 are running because they contain active tasks.

If task T11 stopped, T12 could become active, so UKT1 would remain active (as long as

the operating system allows).

If task T21 stopped, UKT2 would no longer have an executable task and the thread would

go to sleep.

UKT3 is asleep. It is not awakened by the operating system because it is not executable

as long as it has no executable task.

UKT4, if it were granted CPU time by the operating system, would take off and activate

task T41.

Tasks T31, T32, T33 and T42 are in the "Command wait“ state.

 69

To ensure smooth operation of the database, you can prioritize tasks that contain

resources needed by other tasks.

Exactly which tasks are prioritized and the manner of that prioritization can be set using

parameters.

 70

The parameter _IOPROCS_FOR_PRIO which was supported in earlier versions is not

used in MaxDB 7.7 any longer. As now queues for special I/O priorities have been

implemented (see parameters VolumeIOQueuesForLowPriority,

VolumeIOQueuesForMediumPriority and VolumeIOQueuesForHighPriority) the old

mechanism is invalid.

 71

TASKS WARTEN AUF BEZEICHNUNG IN
X_CONS

QUEUE PRIO

Kommunikation zwischen UKTs u2u u2u

I/O-Aufträge I/O-Wait, Vvectorio,
AsynWaitRead,
AsynWaitWrite

ioc ioc

SQL-Sperren oder kerninterne
Sperren

vsuspend, vwait run rav

Kommunikation Anwendung-
Kern

command wait, reply com com

"selbst-dispatched" runnable, vsleep,
Vbegexcl

run rex

Tasks are assigned to queues on the basis of their status. The priority of the task is set

when it leaves the queue.

 72

Executable tasks are assigned a base priority when they are added to the run queue or

their status changes there.

This base priority depends on the previous state of the task.

The base priority can be set for the various prior states.

 73

A task can withdraw itself if, for example, it exceeds MaxExclusiveLockCollisionLoops.

Online change: YES

Up to version 7.7.02 the following parameter names were used :

_PRIO_BASE_COM Command Wait

_PRIO_BASE_IOC I/O Wait

_PRIO_BASE_U2U UKT to UKT communication

_PRIO_BASE_REX self dispatched

_PRIO_BASE_RAV waiting for lock (SQL, intern)

 74

A task that holds a lock can block several other tasks. These, in turn, can block yet other

tasks. This can cause undesired waits.

To reduce wait times, tasks that hold locks for which other tasks are waiting are given

higher priority.

If this parameter is set too high, a long-running job can run at too high a priority. Other

tasks that are not working with the locked object would then receive insufficient CPU

resources; i.e. the runtimes for short queries (such as single record access) would rise.

Values: Default: 80

 0 – 32,000

Online change: YES

 75

In the illustration, task T11 runs into locks held by T13. That causes T13 to be given higher

priority (if TaskPriorityFactor is set).

UKT2 would then have to interrupt T15 and activate T13, if ForceSchedulePrioritizedTask

is set to YES. Otherwise T15 continues to run and T13 gets put into a prioritized queue.

Values: Default 'YES' if MaxCPUs > 1

 'NO' if MaxCPUs = 1

Online change: YES

 76

If a prioritized task attempts to get a region that is being used by another task (collision), it

immediately joins a special queue for the respective region rather than first having to make

MaxExclusiveLockCollisionLoops unsuccessful attempts.

Values: Default 'YES' if MaxCPUs > 1

 'NO' if MaxCPUs = 1
 Online change: YES

 77

 78

When employing an index strategy with a "merged list", the system does not immediately

access the base table with each primary key value it finds in the index list; rather, it first

generates a list of all the primary key values found and sorts them in the order of the

primary keys.

Now the system can access the base table in the order of the primary keys. The time

saved by this process has to be set against the cost of generating the "merged list."

Values:

Default: 500

1 <= IndexlistsMergeThreshold

Online change: Yes

 79

If the parameter EnableIndexOnlyStrategy is set to YES, the INDEX ONLY is employed.

Values:

Default: YES

 NO

Online change: YES

 80

Values:

Default: YES

 NO

Online change: YES

 81

Without aggregate optimization, the BD layer packs the determined individual individual

values from the records into the request packet and thus transfers them to the SQL

Manager. The SQL Manager then calculates the result.

With aggregate optimization, the BD layer directly calculates the result and returns it to the

SQL Manager. This optimization significantly reduces the CPU load.

Values:

Default: YES

 NO

Online change: Yes

 82

Example:

explain

 select *

 from zztele

 where plz like '1%‚

 order by plz desc

MaxDB allows you to backward scan an index. Backward scans place a greater load on

the CPU than forward scans because the data pages do not have reverse chaining. To

obtain access to the data in the index, the index pages of the tree must be read as well.

The database creates an internal sorted result table with EnableFetchReverseScan=NO.

Creating an internal result table stresses the system more than performing a backward

scan.

Values:

Default: YES

 NO

Online change: Yes

 83

If more than one search strategy is possible, it is a good idea to determine the best search

strategy for each statement. This behavior can be switched off with the value YES for the

parameter UseStrategyCache.

Values:

Default: NO: The optimal search strategy is determined for each statement.

 YES: The optimal strategy is determined just once when the statement is

parsed.

Online change: Yes

 84

Using hash tables to calculate aggregates is often faster than creating a temporary B*Tree.

Online change: Yes

 85

For performance reasons temporary hash tables need to remain in the main memory. The

parameter HashedResultsetCacheSize limits the size of those hash tables.

MaxDB stores the data of one hash table into a sorted page chain in the data cache if the

hash table reaches the limit. It uses a new hash table in memory to continue with the

select.

The last hash table and the data of the swapped out to page chains are joined into one

result after all relevant records have been read.

Online change: YES

 86

The join optimizer should always determine the optimal sequence of tables. The best

sequence depends on the size of the tables and the intermediate result set.

The best strategy is determined when all the possible sequences have been evaluated

(permutation). This only makes sense with a small number of tables as permutation is

costly. With five tables, 12 combinations have to be evaluated; with six tables, 720

combinations. The number of combinations is calculated according to n!, where n is the

number of join tables.

An algorithm developed by the MaxDB team works considerably faster than permutation,

but delivers somewhat less precise results.

If there are very many join tables, even the internal algorithm is too slow.

The parameter JoinSearchLevel specifies which algorithm is always to be used

independent of the number of join tables. If you want to use different algorithms depending

on the number of join tables, set the parameter JoinSearchLevel to 0.

Online change: YES

 87

The standard settings are as follows:

 If the number of join tables

 is less than 5, a permutation is carried out,

 greater than 5 and less than 17, the internal algorithm is carried out,

 greater than 16, the greedy algorithm is carried out.

 Online change: Yes

 88

In the previous procedure, first the join result was generated. Then the aggregate was

composed out of the result. Processing was multi-phase.

Now MaxDB can create a join during execution of the join. This leads to reduced memory

requirements - and thus better performane - since the result set of the joins is not

generated. Processing is done is one phase.

Values:

Default: YES: Single-phase processing

 NO: Multi-phase processing

Online change: Yes

 89

For join transitions that are to be processed via an index, importing index blocks in parallel

can improve performance considerably.

Depending on the number of server tasks specified, the corresponding Selects can strain

the I/O system, putting other users at a disadvantage. The value of

ParallelJoinServerTasks should by lower than the number of configured data volumes.

The parameter ParallelJoinMinThreshold (OPTIMIZE_JOIN_PARALLEL_MINSIZE)

determines when the parallel read algorithm can become active based on the size of linked

tables.

Online change: Yes

 90

With outer joins, the result can vary depending on the processing sequence. For this

reason, the parameter EnableOuterJoinOptimization allows you to specify whether the

database should choose the best sequence or if the sequence is to be taken from the

Select statement.

Online change: Yes

 91

Using the parameter EnableJoinHashTableOptimization you can activate and

deactivate the use of hash joins online.

The parameter JoinHashMinimalRatio (OPTIMIZE_JOIN_HASH_MINIMAL_RATIO)

defines the minimum ratio of output amount to the table for the next join step, after

which hash joins are used. The deafult value is 1%.

Online change: Yes

 92

Online change: YES

 93

It is only sensible to generate temporary hash tables for join tables below a certain size.

With large tables, you lose more time with the scan than you gain through the better

search algorithm on the temporary hash table.

Online change: YES

 94

As of version 7.6, parallelization for Update Statistics also occurs for single tables. This

reduces the runtime for collecting data per table.

In the standard, the Update Statistics run uses as many server tasks as data volumes are

defined. If the system load caused by the parallel I/O is too high, you can use the

parameter UpdateStatParallelServerTask to reduce the number of parallel I/O for

Update Statistics.

Online change: Yes

 95

As of version 7.6 Query Rewrite is activated by default.

You can completely deactivate Query Rewrite by setting the parameter EnableQueryRewrite to NO.

Table QUERYREWRITERULES contains all rules. You can switch off single rules with the following statement:

 UPDATE QUERYREWRITERULES
 SET ACTIVE = ‘NO‘ WHERE RULENAME = ’<rulename>‘

Online change: YES

QUERYREWRITERULES in version 7.7.03:

RULENAME ACTIVE COMMENT
AddLocalPredicates YES Add Local Predicates for Joins with OR-Predicates
ConvertExistentialSubquery NO Convert a correlated existential subquery to an IN clause
ConvertOrToIn YES Convert OR to IN
ConvertToExistentialSubquery NO Convert INTERSECT or EXCEPT to an existential subquery
DistinctForSubqueries YES Set Distinct for existential and all subqueries
DistinctPullUp YES Remove distinct elimination in a select if all fromselects are distinct
DistinctPushDownFrom YES Distinct push down from
DistinctPushDownTo YES Distinct push down to
EliminateGroupByOrDistinct YES Remove unnecessary GROUP BY or DISTINCT
EliminateOrderBy YES Remove unnecessary ORDER BY
EliminateSubqueries YES EliminateSubqueries
MergeExistentialSubquery YES Merge a select with an existential subquery
MergeFromSelectOrView YES Merge a select with a fromselect or view
NormalizePredicates NO Normalize Predicates
OptimizeSubqueries YES OptimizeSubqueries
PushDownPredicates YES Push down predicates
PushDownProjection YES Push down projection
PushDownQuantifier NO Push down quantifier
RemoveConstFromGroupOrOrderBy YES Remove unnecessary constants from GROUP BY or ORDER BY
SimplifyPredicates YES Simplify Predicates

 96

Because of previously unstatisfactory results for determining statistics using the sampimg

method, new algorithms were introduced in 7.5 and 7.6. As of version 7.6, the database

default is the new algorithm 1.

Results to this point show that importing 5% of table data is sufficient with the new

algorithm. With the traditional algorithm, at least 10% were necessary. Often it was

necessary to read much more than 10% of the table data to get reliable statistics.

Online change: Yes

In Version 7.5, the new algorithms are available as of 7.5.00 Build 34.

 97

