Heike Gursch

Werner Thesing

THE BEST-RUN BUSINESSES RUN SAP™

Overview

No-reorganization principle
B* trees

Shadow page algorithm

@ SAP 2009 / MaxDE Internals — B*Trees and MNo-Reorg Method/ Page 2

Preconditions for no Reorganization

Space that is no longer used must be available for the database immediately.
The degree of usage of the data blocks must maintained at a consistently high level.

The data storage within the data blocks must be compact; no gaps are allowed.

@ SAP 2009 / MaxDE Internals — B*Trees and MNo-Reorg Method/ Page 3

This slide describes the paradigms of a database system that is reorganization free.

As MaxDB does not need to be reorganized, the database can be operated with minimal
administrative outlays.

The absence of the need to reorganize also means that the database always works with
optimal access structures. That means consistently good performance.

No-Reorganization Principle (1)

No-reorganization
update in place
sort by insertion
delete in place

Storage of data in B* trees
Tables and indexes
Data of type LOB (BLOBs, CLOBSs, ex Long)

@ SAP 2009 / MaxDE Internals — B*Trees and MNo-Reorg Method/ Page 4

To achieve an efficient I/O strategy while maintaining the no-reorganization principle of the
database system, a framework of structural and functional prerequisites was developed for
MaxDB. These include, on the one hand, the no-reorganization principle itself, which is the
result of separate memory management for the secondary storage media and the logical
data pages and is primarily based on the following functions:

m Sorting of data records when they are inserted,
m Changing of data records in place,
m Changing of data records in place,

On the other hand, there are the logical storage structures and terms. We will take a closer
look at:

m B* Trees,

m Tables and indexes,

m Primary and secondary keys

m and the storage of LOBs (BLOBs — binary large objects, CLOBS — character large objects)

No-Reorganization Principle (2)

Storage concept
concept of B* trees
access to data
execution of an INSERT
execution of a DELETE
execution of an UPDATE
B* tree balancing
striping

The MaxDB storage concept ensures that data is quickly stored and found on the
available disks. It is the key to automatic load balancing by MaxDB and thus guarantees
the no-reorganization principle of the database system.

B* Tree Concept

Level 2 (Root level)

Level 1 (Index level)

FN N

Level O (Leaf level)

N I O |

® SAP 2009 / MaxDB Internals - B*Trees and No-Reorg Method/ Page 7

In MaxDB, data is stored in B* tree structures.
The smallest storage unit is the page. In MaxDB, the size of a page is 7.5/8 KB.
A B* tree is created for each table and secondary index.

A B* tree reaches from the highest level, the root level, to the lowest, the leaf level. The
data is always on the leaf level.

The primary index of the tables serves as a sorting criterion for the setup of the tree
structure.

It can be demonstrated that a B* tree procedure generally requires fewer accesses to
find single records than other access methods.

Structure of a B* Tree

Level 2 (Root level)

® SAP 2009 / MaxDB Internals - B*Trees and No-Reorg Method/ Page &

The entries in the data pages are comprised of two parts:
m The fist part is comprised by the contents of the key fields of a table row. We shall refer to this as the separator.
m The second part is comprised by the remaining data.

On index pages, every separator is followed by a logical address that refers to a page on a lower index
level or on the leaf level. The number of entries that fits on an index page depends on the length of the
separators.

A node of the B* tree always comprises one page. Thus the number of entries per B* tree level depends
on the length of the separators.

In addition to the separator, leaf pages contain the contents of the other columns of the respective table
row. The number of entries that fits on an index page depends on the length of the separators.

The amount of memory required for a table depends on the length of the key fields and the total length of
a table row.

The procedure described here is supplemented by special treatment of tables that contain LOB columns
(Large Objects). Additional auxiliary trees are created for the purpose of accepting the contents of LOB
columns, which can be many times longer than a data page.

Access to Data (1)

Level 2 (ROOl |eve|) SELECT F‘ROM address
WHERE city ='Athens'
Athens < BRaf
Goto Address

Level O (Leaf level)

® SAP 2009 / MaxDB Internals - B*Trees and No-Reorg Method/ Page 9

The B* tree procedure makes it possible to find data quickly.

Here's an example of how a data record is found: looking in an address table with the
primary index 'city', you want to find an entry for ‘Athens’.

The search begins on the root level. The comparisons described in the following take
place on a character by character basis.

The database system checks if the value 'Athens' is smaller than the second entry on
the root page, 'Baf".

As the value is smaller, the corresponding logical address information from the first
branch is evaluated. It points to a page on the next level (index level).

Access to Data (2)

Level 2 (Root level) igf{gT F'IEOM i'agcé;ess '
city = ens

Level 1 (Index i"'\fgvel)

oo | e [peeee [o [g [[l I]

Athens < Au
Goto Address Ox. .. Level O (Leaf level)

® SAP 2009 / MaxDB Internals - B*Trees and No-Reorg Method/ Page 10

The comparison then continues on the index level. Now the desired value, 'Athens’, is
smaller than the entry 'Au" on the data page.

So the ‘An’ branch is evaluated.

The pointer points to the second page on the leaf level. Now we are on the leaf level
(level 0).

10

Example Root Level

Start position of Page number on Truncated
separator next level primary key value

*{ e30adm on p3 : /home/e30:&

"USER: CONTROL

ROOT 52820 entries : 18 [block 528207]
. filevers: 36374 convvers: 5751
writecnt: 36

: (pos 00681) -> 541585 #0 sep(0)

1
2: (pos 00093) -> 528323 #0 sep(69): ’ Becker

Norbert dummy4 ”
3: (pos 00175) -> 484811 #0 sep(69): ’ CABY

Jean-Paul dummy3”
4: (pos 00257) -> 485113 #0 sep(69): ’ Dedopoulou

Katerina dummy3”
5: (pos 00339) -> 558877 #0 sep(69): ’ Fertig

Ruediger dummy2”
6: (pos 00421) -> 573136 #0 sep(69): 7 Graves

Deborah dummyl ”
7: (pos 00503) -> sep(69): 7 Hilgenhaus

Wolfgang dummy3”
8: (pos 00585) -> 484215 ep(64): ’ Kabadiyski

[| Mario d’

:nohold FZ7:up F8:down

We'll follow this page

number

® SAP 2009 / MaxDB Internals — B*Trees and No-Reorg Method/ Page 11

This page shows a root page as displayed by the MaxDB Tool x_diagnose.

At the top you see the page header. As the page number and root number on this page are
the same, this is a root page. The B* tree has three levels (levels 0 — 2). This page has
18 entries. It was changed 36 times.

The separators are shown in their alphanumeric order. You see the respective start
position, the page number on the next page to the separator, the length and the value of
the separator.

11

Example Index Level

Start position of Page number Truncated
separator on the next level primary key value

“e30adm on p3 : /fhome/e30a

USER: CONTROL

m sorted entries : 103 [block
root : 528207 convvers: 4]
right 1 484215 writecnt:

00d81) -> 527530 #0 sep(69): ’ Hilgenhaus

Wolfgang dummy3”
00163) -> 580885 #0 sep(69): 7 Hillebrand

Hartmut dummy3”
00245) -> 516217 #0 sep(69): 7 Hilmen

Douglas dummy4 ”
00327) -> 559579 #0 sep(64): ’ Hinderer

Harald g
00403) -> 483929 #0 sep(69): ’ Hinterberger

Franz dummyd ”

pos 00485) -> 516699 #0 sep(69): 7 Hirai

Shinichiro dummy3”
00567) -> sep(64): 7 Hirokawa

Ichiro d’
00643) -> 580883 #0 : 7 Hirschenberger

Stefan dummyd ”

chold F7:up F8:down
We want to follow this page

number...

® SAP 2009 / MaxDB Internals — B*Trees and No-Reorg Method/ Page 12

This page is an index page of level 1. The separators refer to pages of the leaf level.
The header contains the known root page. It is checked with each access.

The page has 103 entries, sorted.

12

Example Leaf Level |

Start position of Primary key length EWA YA
the record
¢ e30adm on p3. : /fhome/e30:
USER: CONTROL
entries : 61 [block 558817]
root : 528207 convvers: 4529
right : 580889 writecnt: 1
|
1: (pos 00d81) key(68): 7 Hirokawa Ich
iro dummy ”
2: (pos 00191) key(69): ’ Hirokawa Ich
iro dummyd ”
3: (pos 00303) key(69): ’ Hirokawa Ich
iro dummy2”
4: (pos 00415) key(69): ’ Hirokawa Ich
iro dummy3”
5: (pos 00527) key(69): ’ Hirokawa Ich
iro dummy4”
6: (pos 00639) key(69): 7 Hirose Fum
inori Wexstr”
7: (pos 00761) key(68): ’ Hirose Fum
inori dummy ”
8: (pos 00881) key(69): ’ Hirose Fum
inori dummyl ”
Fl:hex/int F2:exit F3:end FS:nohold F7:up F8:down

® SAP 2009 / MaxDB Internals — B*Trees and No-Reorg Method/ Page 13

In this example the diagnosis tool displays only the primary key values.

This page has 61 entries. The last record ends at position 7385.

13

Example Leaf Level Il

\\ e30adm on p34777: /home/e30adm
DIAGNOSE E30

(o] x|
USER: CONTROL

1: (pos 00081) key(68):
iro

7 Hirokawa Ich
dummy ”

00001
00005

81
dec:110
hex: 6E
chriziin

21
101
dec: 32
hex: 20

41

recLen

recVarcolOff: 7
record
1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20

82 83
0 68
00 44

D

22123

103
32 32
20 20

84 85

24 25

105
32 32
20 20

44 45
32 32
20 20
64 65
32 32
20 20

84 85

165
6 32
06 20

119 recKeylLen : 68

86 87

26 27

107
32932
20 20

46 47

32 32
20 20

66 67

147
Ihe S
20 20

86 87
167
49 48
31 30
1 0

recVarcolCnt: 4
BUFFER FROM 1 TO 110 (FROM 81 TO 190

88 89 90 91 92 93 94 95 96 97 98 99
0 32 72105114111107 97119 97 32 32 32
00 20 48 69 72 6F 6B 61 77 61 20 20 20
H i r o k a w a

28 29 30 31 32 33 34 35 36 37 38 39 40
109 111 113 115 117 119
320320 320320328 328 32 32332032 328 32532
20 20 20 20 20 20 20 20 20 20 20 20 20

48 49 50 51 52 53 54 55 56 57 58 59 60
129 q 31 133 135 137 139
32 32 32 73 99104105114111 32 32 32 32
20 20 20 49 63 68 69 72 6F 20 20 20 20
e h 1 piin

68 69 70 71 72 73 74 75 76 77 78 79 80
149 151 153 155 157 159

32 32 32 32100117109109121 0194112 O

20 20 20 20 64 75 6D 6D 79 00 C2 70 00
d u m m y <]

88 89 90 91 92 93 94 95 96 97 98 99
169 171" 173 175 177 179

49 48 50 1 32 1 32 15 32 70105110 97

31 30 32 01 20 01 20 OF 20 46 69 6E 61
1 0 2 F 1i n a

HOLDING

Fl:hex/int F2:exit F3:end FS5:nohold FZ7:up F8:down

© SAP 2009 / MaxDB Internals — B*Trees and No-Reorg Method/ Page 14

This graphic shows the first 100 bytes of the first record of page 558817.

Each record begins with a header. This contains the length of the record, the length of the

primary key value, the relative start position of the first variable-length value (e.g.

VARCHAR) and the number of variable-length fields.

On this page the record begins on page 81. The primary key begins within the record at

position 10.

14

Contents of a Data Page

Data Entries
(unsorted)

S/
I Position List
(sorted)

® SAP 2009 / MaxDB Internals — B*Trees and No-Reorg Method/ Page 15

The data records are located unsorted in the start area of the target page.

In the end area of the data page, there is a position list that refers to the individual
records of the data page. This address list is arranged so that in the case of sequential
access via the position list, the data entries can be read sorted.

The database system searches the remaining entries and ultimately returns the
requested table row.

The position list and the data record entries start at opposite corners of the page and
grow towards each other.

15

Sort by Insertion (1)

Emmreea

INSERT INTO address (name) wvalues ('Arbon‘')

® SAP 2009 / MaxDB Internals — B*Trees and No-Reorg Method/ Page 16

If a record is to be inserted into the database or edited, MaxDB first searches for the
data page that is changed by the action. This is true for all the actions described in the
following. Then, if necessary, the required space is made available by way of clearing
operations.

sort by insertion
The records are:
m inserted into the target page at the end of the used data area,

m sorted in the position list via an entry that, in order to minimize the number of moved bytes, contains
only references to records.

The records in the data part are only sorted if a clearing operation becomes necessary.
If a data page is moved into another one, a sorted block is advantageous as this makes
it possible to move whole groups of records rather than copying record by record.

MaxDB data pages are organized such that the data area grows into the page from the
beginning and the sorting list from the end.

Let's assume that the record fits on the page. MaxDB simply puts it at the end of the
area available on the page...

16

Sort by Insertion (2)

i 195 14339104169

Athens | .

INSERT INTO address (name) values ('Arbon‘')

® SAP 2009 / MaxDB Internals - B*Trees and No-Reorg Method/ Page 17

... and then the position list is updated. The address of the new entry is written at the
correct position in the position list. In our case, the correct position is position 4, which
accordingly points to the seventh data record, 'Arbon'.

17

Update in Place (1)

I e

UPDATE address
SET street = 'AKROPOLIS 1'

KEY city = 'Athens'

® SAP 2009 / MaxDB Internals - B*Trees and No-Reorg Method/ Page 18

update in place
m Records are changed directly on the target page.

m Case 1: length and key remain unchanged.
If an UPDATE occurs and the separator is unchanged, the contents of the row are changed

directly.

m Case 2: the key changes.
If changes have been made to a key field, the UPDATE is converted into a DELETE with

subsequent INSERT. If necessary, clearing operations are carried out.

18

Update in Place (2)

-

195 143 184 169

UPDATE address

SET street = 'Olymp 27'
KEY city = 'Athens'

@ SAP 2009 / MaxDB Internals — B*Trees and No-Reorg Method/ Page 19

m Case 3: The length is changed, the key remains unchanged.
The contents of the row are changed directly, but the position of the subsequent entries is different. Thus
the subsequent records need to be moved and the address information (of the subsequent records)
adjusted in the position list. If necessary, clearing operations are carried out.

If it is necessary to change the tree structure, first the required space is made available by
way of B* tree clearing operations or by inserting a new block; then the UPDATE is carried
out as described.

19

Delete in Place (1)

Ardwick|.......

Arbon

411 217]143 2061191

DELETE FROM address WHERE name = 'Arbon'

® SAP 2009 / MaxDB Internals - B*Trees and No-Reorg Method/ Page 20

delete in place
m Records are changed directly on the target page.

m The positions in the sorting list must be changed on the target page for all physically subsequent
records

m If a certain usage level is not reached, a B* tree clearing operation is carried out

20

Delete in Place (2)

o

195|143 (184{169
DELETE FROM address WHERE name = 'Arbon'

® SAP 2009 / MaxDB Internals - B*Trees and No-Reorg Method/ Page 21

The records and the position list on the page are re-arranged so that the storage space
used is contiguous.

All changes to pages are executed in the main memory. That makes them very fast, but
also CPU-intensive.

If the fill level of a page falls below a certain mark, the tree structure is rearranged. An
example of such a rearrangement will be shown later.

MaxDB offers the possibility of applying the attribute DYNAMIC to tables. Only very
simplified clearing operations are carried out on these tables. Such tables require more
space, but they offer noticeably higher performance. This attribute is suited to tables
that are highly dynamic, in particular through random accesses and large fluctuations in
the size of the table.

21

Inserting a Data Page
(Page Split Operation) (1)

INSERT INTO address (name) values (‘Albas‘)

© SAP 2009 / MaxDB Internals - B*Trees and No-Reorg Method/ Page 22

Now let's have a look at a simple change to the tree structure.

Let's assume that, due to an INSERT, the new data record no longer fits on the
corresponding page.

A new page is then created on which the new record and half of the data records from
the page that was too small for the INSERT are written. The respective records on the

original page are then deleted.

22

Inserting a Data Page
(Page Split Operation) (2)

|I

|
-

I I

INSERT INTO address (name) values (‘Albas‘)

|
-

® SAP 2009 / MaxDB Internals - B*Trees and No-Reorg Method/ Page 23

If necessary, the database system updates the pointers to the following pages.

In addition, the address and separator information for the new page is entered in the B*
index page above it.

If this also does not fit on the B* index page, a new page has to be inserted.

If the B* tree is no longer able to accept the new page, that is, even in the root page
there is no more space available in which to insert a new branch, the entire B* tree has

to be expanded by a new level.

23

B* Tree Balancing (1)

RNl RN

/|

ENAR-ENAN-NEEE-EEER

® SAP 2009 / MaxDB Internals - B*Trees and No-Reorg Method/ Page 24

If the distribution of pages in the B* tree is unbalanced, that is, if there is an inordinate
amount of pages on certain branches of the tree,...

24

B* Tree Balancing (2)

Hill 2N

_/

HENE-BEEN - BEED-EEEN

® SAP 2009 / MaxDB Internals - B*Trees and No-Reorg Method/ Page 25

performance suffers because, on average, more accesses are needed to find data
records.

Such states are recognized by MaxDB when INSERTs, UPDATEs and DELETES are
processed and the tree is rearranged in the affected subareas. This procedure is known
as balancing. This involves moving records back and forth between pages in order to
achieve the highest possible utilization of the pages.

25

B* Tree Locks (as of version 7.5)

B* tree locks are no SQL locks !
B* tree locks are held for a very short time

@ ® @ v

Read access .
Write access

Share
lock Root level

m Index level

ock Leaf level
@ SAP 2009 / MaxDB Internals — B*Trees and No-Reorg Method/ Page 26

Each time a B* tree is accessed, the respective page must be locked. As of version 7.5,
these locks are no longer managed in separate lock lists but rather directly in the data
cache. A lock is requested when the desired page in the data cache is accessed.

Advantages as compared with the lock concept in versions 7.3 and 7.4: a significant
characteristic, and thus also the biggest disadvantage of the old concept, was that the
locks for the pages B* tree were managed in a separate component, the so-called tree lock
list. Heavy parallel access to the list could lead to collisions.

Check Data / Check Table (VERIFY): In contrast to the SAP DB Versions 7.3 and 7.4,
from version 7.5 this new concept makes it possible to execute change operations on the
B* trees in parallel with Check Data or Check Table.

26

B* Trees

Exactly one B* tree for:
every table
every table with columns of type LOB for all short LOB values (< ca. 8 KB)
every longer LOB value (> ca. 8 KB)
every index
subtrees of indexes

@ SAP 2009 / MaxDEB Internals — B*Trees and MNo-Reorg Method/ Page 27

MaxDB uses B* tree structures for the storage of all its tables.

The term "table" includes:
m Primary data, including the associated LOB data (LOB Large Object)
m Secondary data as required for single and multiple secondary keys.

A MaxDB table always has a primary key. This is either a user-defined key or a generated
internal key. A user-defined key can be comprised of several columns (multiple key).

The user can define additional secondary keys, which can also consist of one (single
index) or several (multiple index) columns.

There is exactly one B* tree for the primary data of a table and also precisely one B* tree
for each defined index (also known as: secondary key). If a table is defined with LOB
columns, one additional B* tree is created for the purpose of accepting the LOB values in
these columns that do not exceed a certain length. If LOB values are longer than this
defined value, a new B* tree is created for every single one of these values.

27

LOB Columns (Large Objects)

. Table for Proprietary files
Primary table short LOB values for longer
Ki[10 |LOBid 1 [OBid 1 |L-Data LOB values
K2 (4000 LOBid 2 LOBid2 |L-Data
K3 (32000 |LOBid 3

K4 132000 |LOBid 4 LOB
— -Data

\

[/

rees and No-Reorg Method/ Page 28

This illustration shows a table with a LOB column. The number column represents the

length of the LOB values. There is a B* tree for primary data, a B* tree for the shorter LOB
values and n B* trees for n longer LOB values.

Irrespective of their length, for LOB values the primary table always has a single entry of a
fixed length which refers to the respective storage structure.

28

Indexes

Primary table Index table

K1/10[10 1010 |K1] K3| K5|...
K2[20[10 2010 | K2

K3/ 10[10 2040 | K4| K6
K4|20]| 40 4030 | K7

K5/ 10[10

K6| 20|40

K740 30

@,
O
Qgé@ .

@ SAP 2009 / MaxDB Internals — B*Trees and No-Reor

g Method/ Page 29

g
OO

ofe

OO

This illustration shows an example of a table with a secondary key defined for multiple
fields (2 fields). There is one B* tree for the primary data and a second B* tree for the

indexed data.

The B* index is not to be confused with the term index as it is commonly used for

secondary key definitions!

If the primary key values for a secondary key value cannot be contained on one data page,
MaxDB stores the primary key values, sorted, in a separate B* tree. This means that the

size of the secondary key tree can be significantly decreased.

29

B* Trees

ObPrimary data Qob Index
T ole) SO,
| 0

\ Qb

OO0.

K: Key short LOBs Q longer LOBs
I: Index gé b gé b

L: LOB column

oje olo

@ SAP 2009 / MaxDEB Internals — B*Trees and No-Reorg Method/ Page 30

This illustration, taking the example of a table that contains LOBs and for which a
secondary key has been defined, depicts how the assignment to B* tree structures works.

30

System View ROOTS

File-
Directory

File-Directory

o TABLENA INDEX .

TABLEID OWNER ME NAME TYPE ROOCT FILE ID
0000000000000CE1 SAPS13 CUEX CUEX~1 NAMED 119047 C2EBSDA3FFFFFFFF7FFFFFFF0000FFFF07D1
INDEX 01000100000A07010000000000000CE10000

00000000
0000000000000CE1 SAPS13 CUEX ? TABLE 119036 39EASDA3FFFFFFFF7FFFFFFFO000FFFFECDO
01000100000A0D000000000000000CE10000

00000000
0000000000000CE1 SAPS13 CUEX ? SHORT 119030 33EASDA3FFFFFFFF7FFFFFFFO000FFFFF6D0
STRING 01000100000A12000000000000000CEL0000

FILE 00000000
0000000000000290 ? ? ? LONG 4311 122A5CA3FFFFFFFFTFFFFFFF0000FFFFD710
COLUMN 00000100000Cc010000000000000002500000

00000000
00000000000004BD ? ? ? LONG 4398 EB2BSCA3FFFFFFFF7FFFFFFF0000FFFF2E11l
COLUMN 00000100000€010000000000000004ED0000

Datenbank-Katalog

Tables are internally administered by a 'tableid’

Mapping to B* trees via an entry in the file directory.

@ SAP 2009 / MaxDB Internals — B*Trees and No-Reorg Method/ Page 31

00000000

Datenbank-Katalog

A table, which is known to the user by a name, is internally administered with a ‘tableid’.
The correlation between the names and tableids is registered in the database system

dictionary (catalog).

There is also the database file directory, which contains the assignments of the root
nodes of the B* trees to the tableids of the database objects. The tableids are stored in the
file directory along with a type flag which indicates what contents the underlying B* tree

has.

Thus a single tableid, in combination with the type flag, can be used to administer a table
with all its associated B* tree entries in the file directory.

The system table ROOTS contains information from the file directory and the database

catalog.

31

System View FILES

oM R E

select{.¥, t.tablename from files f, tables t

where f.primaryfileid = t.tableid or ffileid = t.tableid
and t.owner = usei

\ [[INS [Ln3,Col19 L
FILEID | SESSIOND | ROOT | TYPE | PRIMARYFILEID | FILESTATE |
000000000000048C ? 75476 TABLE ? OK
000000000000048D ? 105246 INDEX 000000000000048C OK
000000000000048E ? 30812 INDEX 000000000000048C OK
000000000000048F ? 75477 INDEX 000000000000048C OK
0000000000000490 ? 15922 INDEX 000000000000048C OK
0000000000000491 ? 60587 INDEX 000000000000048C OK
| ENTRYCOUNT | TREEINDEXSIZE | TREELEAVESSIZE | LOBSIZE | TABLENAME
114199 144 14400 0 ZZTELE
2 104 9240 ? ZZTELE
513 8168 20504 ? ZZTELE
20001 48 10584 ? ZZTELE
5156 3144 14512 ? ZZTELE
10 48 9320 ? ZZTELE

@ SAP 2009 / MaxDB Internals — B*Trees and No-Reorg Method/ Page 32

As of Version 7.6, the FILES system view displays all information in the new file directory.

The user can specify the route to the database catalog in his SQL query. The columns of the FILES view
mean the following:

FILEID Corresponds to ID for tables, indexes, etc. in the catalog
SESSIONID Creator session for temporary trees

ROOT Root page number of the B* tree

TYPE TABLE | INDEX | FIXED OBJECT | VARIABLE OBJECT |

KEYED OBJECT | KEYED OBJECT INDEX | SHORT
COLUMN FILE | internal file type for temporary files

PRIMARYFILEID

FILEID of the B* tree of the table

FILESTATE

OK | DELETED | BAD | READ ONLY

ENTRYCOUNT

Number of entries in the tree. For indexes, entries in subtrees
are not included.
NULL: Value was not yet determined for migrated systems.

TREEINDEXSIZE

Size of index level in KB

TREELEAVESIZE

Size of leaf level in KB

LOBSIZE

Size of all BLOB values of the table

32

Disk Striping

Data Volumes

© SAP 2009 / MaxDB Internals — B*Trees and No-Reorg Method/ Page 33

An important role in the access performance of the database is playing by the MaxDB
striping mechanism, which distributes the data pages evenly on the disks. Additional
striping can be performed by the hardware.

Striping guarantees even distribution of the 1/0 load on the available disks.

Even load balancing of all the data areas in the database also prevents individual data
areas from overflowing. A table can be larger than a single data area without the need
for maintenance tasks to be carried out.

33

1/0 Concept

Parallel asynchronous |/0
Shadow page algorithm
= Converter
m Free block management
m Savepoints
m Backup integration
Segmentation of the data cache
Pager and server tasks
Log flush

@ SAP 2009 / MaxDEB Internals — B*Trees and MNo-Reorg Method/ Page 34

The 1/O concept of the database works according to the shadow storage administration principle. The core
elements are: optimized support of symmetrical multi-processor systems; the transfer of as many 1/Os as
possible to asynchronous execution; and highly-optimized data backup performance suited to the dimensions
of modern databases.

A user task should not be forced to wait for I/O processes to come to an end. All change operations are
executed in the main memory. The I/O subsystem must ensure that the system always retains its ability to
restart at the point of termination.

The shadow storage administration distinguishes between originals and copies. When the system is restarted
after termination, the valid states of the data pages are automatically recognized. The concept is based on
savepoint cycles, which are closed by a savepoint. A completed cycle is specified by the version number of
its savepoint. This number is referred to as the 'savepoint version' or ‘converter version'.

The different versions of the data pages that arise as a result of the savepoint cycles are administered in the
converter. Here the originals and copies of the logical data pages are assigned physical blocks. Thus the
location at which a logical data page is stored can change from savepoint cycle to savepoint cycle.

Another structure is employed for the administration of the data volumes (FBM: Free Block Manager). As the
logical data pages no longer have a definite location in the memory, the FBM administers the states of the
physical blocks. These structures enable optimal performance for data backup as well.

The data cache was optimized with regard to SMP support by the use of pager and server tasks that work in
parallel.

34

Memory & Disk

Data Volumes

Converter /0 Buffer Cache Catalog
Cache Cache
FBM 1,
Shared
l——p SQL
Cache
Data Cache

@ SAP 2009 / MaxDEB Internals — B*Trees and MNo-Reorg Method/ Page 35

The introduction of shadow storage administration brought the launch of the converter.
From Version 7.4, the converter is no longer stored in the system devspace but distributed
across the data volumes. Every I/O access to a data page retrieves its information from
the converter. For that reason, the complete contents of the converter are kept in the main
memory (converter cache).

Free block management (FBM) for free blocks in the data volumes is kept in the main
memory and is reconstituted with each restart using information from the converter.

Other important caches include the data cache, which contains the most recently used
data pages; the catalog cache, which contains dictionary information on the used object
and, if shared SQL is not active, buffers execution plans; and the shared SQL cache,
which contains executed SQL statements, execution plans and monitor data.

The next few pages will present the concept of shadow memory using examples.

35

Shadow Page Algorithm (1)

Savepoint
version 22

' | time

IO Buffer Cache Converter page 2 Savepoint 24- 22

m I Data [[Device | Device |Used |Save |Saved
4711 | Pno No Offset Pages

N | | 4711 2 177 1 1 0~

JF | a2l 2 23500 1 o 0
| | |

4711 | Lz

@ SAP 2009 / MaxDB Internals — B*Trees and No-Reorg Method/ Page 36

In our example, the database instance is in the online operational state. The last completed savepoint cycle has
the number 21.

The IO buffer contains data and converter pages.
In the converter pages, we find the positions of the data pages in the data volumes.

Data page 4711 will now be changed in the cache in savepoint cycle 22. Initially, this change does not lead to a
write operation to the data volumes.

The savepoint cycle is closed with a savepoint. First, all changed pages are written to the data volumes. For
data page 4711, the FBM determines position 177 in data volume 2. Data page 4711 is written to the
determined position in the data volume and the position data is written to the converter page. The data page is
not written at the position that was valid for savepoint 21.

After all changed data pages have been written to the data volumes, the savepoint versions in the changed
converter pages are set to the number of the savepoint cycle and the converter pages written to the data
volumes.

Each converter page stores the positions of up to 1861 data pages.

A converter page contains the following information about each data page:
m the number of the data volume,

m the number of the data volume,

m a flag indicating whether the data page is in use (required to indicate used data pages that have not yet been written to a
data volume),

m aflag indicating whether the data page is relevant for incremental backups,

m a flag indicating whether the datap page was already backed up in the incremental backup.
This way the information on the data page to be saved is not lost in the case of an aborted incremental backup.

36

Shadow Page Algorithm (2)

Savepoint Savepoint
version 22 version 23
. | | |
| | I | time
update delete
4711 4712
[0 Buffer Cache Converter page 2 Savepoint 22 23
ng‘ Data Device | Device Used |Save | Saved
4711 I I | Pno No Offset Pages
| | | 4711 2 177 | 1 1 0~
| | | 4712 -l 0 1 0
| | |

4711

4712 | | v |

@ SAP 2009 / MaxDB Internals — B*Trees and No-Reorg Method/ Page 37

In savepoint cycle 23, a user deletes all entries in data page 4712. Upon release, the page
is immediately marked as free in the converter.

Only the converter page is re-written at the time of the savepoint. Data page 4712 is not
re-written. The converter page is written to a new position in a data volume.

After the completion of the savepoint, the former position of data page 4712 in the data
volumes is marked as free in the FBM.

37

Shadow Page Algorithm (3)

Savepoint Savepoint Savepoint
version 22 version 23 version 24
l | L | |
! | ! | ' | time
update delete new
4711 4712 4712
10 Buffer Cache Converter page 2 Savepoint 23- 24
m Data | Device |Device |Used [Save |Saved
4711 Pno No Offset Pages
4711 2 177 1 1 0~
| 4712 1 1235 1 1 0
|

Chan 1
| 4712 |

@ SAP 2009 / MaxDB Internals — B*Trees and No-Reorg Method/ Page 38

In savepoint 24, the database uses page 4712 for new data. The data page could already
have been reassigned in savepoint cycle 23.

The new data page is marked as used in the converter. But no position for a data volume has
been entered yet.

Initially, changes take place only in the cache. Upon completion of the savepoint cycle, the
data page is written and its position entered in the converter. The converter page is written
to a new position in a data volume.

38

Shadow Page Algorithm (4)

Savepoint Savepoint Savepoint Savepoint
version 22 version 23 version 24 version 25
| | | | | | |] -
I | I | | | I | tllne
update delete new update write
4711 4712 4712 4711 4711
10 Buffer Cache Converter page 2 Savepoint 24
m Data | Device | Device |Used [Save |Saved
Pno No Offset Pages
\ 4711 1 438 1 1 0
\ 4712 1 1235 1 1 0
4713 |

PR ISP R W

e
4712 | Eczm

@ SAP 2009 / MaxDB Internals — B*Trees and No-Reorg Method/ Page 39

Data page 4711 is changed again in savepoint 25.

A data page can be written even before the completion of the savepoint cycle. The
savepoint itself generally takes a few seconds as several data pages are written.

Data page 4711 is written and the new position entered in the converter page. The

savepoint is not yet complete.

39

Restart after Emergency Shutdown

SADd

Savepoint Savepoint Savepoint Savepoint
version 22 version 23 version 24 version 25
| | | | | | | | _
| | | | | | | I. time
update delete new update write
4711 4712 4712 4711 4711
10 Buffer Cache Converter page 2 Savepoint 24
| Data | Device |Device |Used |Save |Saved
I Pno No Offset Pages
| 4711 2 177 1 0
| 4712 ! 0

4711 | undo
Savepoint 24
redo

TN
N
Goanz > Coamp D
i

4712 Ecz

@ SAP 2009 / MaxDB Internals — B*Trees and No-Reorg Method/ Page 40

Before savepoint 25 is complete, an emergency shutdown occurs. The next restart reads
the valid converters for savepoint 24 from the data volumes.

Free block management sets up when the converter is read. The position occupied by data
page 4711 through the write operation in savepoint 25 is marked as free.

Data page 4711 can be read via the old valid position.

The starting point in the restart page for savepoint 24 is known. The redo log entries are
redone starting from this point. The change to data page 4711 during savepoint cycle 25
will be redone if the transaction that performed the change was completed with Commit
before the emergency shutdown took place.

The writing of the restart page to position 2 in data volume one completes a savepoint
cycle.

40

Converter

SADd

Dynamic page numbers (SQL) Static page numbers (OMS)
Conv. map Converter page Conv. map Converter page
Data Data Used Save Save Device Device Data Data Used | Save Save Device | Device
Pno Pno Pages |Pages |No Position Pno Pno Pages Pages |No Position
Pending Pending
0-1860 1861 1.0 0 2 T 0-1860 1861 1 0 0 3 523
1862 1 0 0 1 8893 1862 1 0 0 4 8893
1861-3721 7 1861-3721 ,
1 1 ’ o
3722-5582 3722-5582 I
I
I
1
\

Joe
I
I
1
1
1
1
1 ~
I
I
1
1
I
1
1
1

’

Data Volumes

nConverter page nSQL data page DOMS data page

@ SAP 2009 / MaxDB Internals — B*Trees and No-Reorg Method/ Page 41

In versions < 7.4, the converter was implemented as a static array. The ability to enlarge an instance in online
mode was limited. The limit was set with the parameter MAXDATAPAGES. This parameter defined the size

of the converter. So the converter was generally larger than necessary.

From Version 7.4, the converter can grow and shrink dynamically. The converter pages are distributed across
all data volumes. Upon restart, read access to the converter pages is done via a tree structure. The tree has
3 levels: a root level, an index level and a leaf level. Upon restart, the database finds the root page of the
converter via the restart page at the beginning of the first data volume. It contains the positions of the index
pages. For their part, the index pages contain positions of the leaf pages. The leaf pages are not necessarily
sorted. From Version 7.4.3., the restart reads the converter pages in parallel.

The tree as a whole contains pages for 3 converters, one each for
m Static page numbers for OMS data (live cache)
m Dynamic page numbers for permanent data that is not OMS data

m Page numbers for temporary pages

Static and dynamic data pages are handled separately for the following reasons:

Changes to relational data are logged in the log without position information for the data records.

Changes to OMS data are done on the basis of an object ID. The object ID contains the number of the data page that
contains the object.

Without this separation, under some circumstances it might not be possible to restore objects in a log recovery due to
the corresponding data page number for relational having been assigned.

41

Scalability through Converter Implementation

SADd

Converter page 1

Data Used |Save Save Device | Device
Pno Pages |Pages No Position
Pending
0 1 0 0 2 177
Page 1 1 0 0 1 8893
Handler
Cache-Postion Converter page 2
Data Used |Save Save Device | Device
Lock-Flag Pno Pages |Pages |No Position
Pending
Number of Free 1861 1 0 0 2 345
1862 1 0 0 4 437
Conv. map

Data
Pno

0-1860

3722-5582

5583-7443 ‘\
Write pno 3826 pager

Data volumes

@ SAP 2009 / MaxDB Internals — B*Trees and No-Reorg Method/ Page 42

A converter page has 8192 bytes. It contains references for 1861 data pages. A database
with 500 GB of used data requires a converter of roughly 278 MB.

When the converter is read during the restart, a converter map is generated in the cache.
The converter pages in the cache do not have fixed positions. The position of a converter
page is determined via the converter map each time it is accessed.

For each converter page, the converter map contains the cache position and the number
of free entries as well as administration information for the savepoint.

Accesses to converter pages are synchronized through the use of converter regions. Each
entry in the converter map is assigned a region. You can set the number of regions with
the parameter ConverterStripes (until 7.6 CONVERTER_REGIONS). This allows several
users to access and change converter pages at the same time.

From 7.4, free page numbers are no longer determined by way of a PNO pool. They are
determined directly from the converter. Free entries in the converter pages are
concatenated via main memory structures. So several users working at the same time can
use new pages very quickly.

42

Writing to Converter during Savepoint

| | T | | T t

End Svp 22 Update Start Svp 23 Write 1862 Write Write Restart Page
record 4 Converter End Svp 23
SQL data page 1862 Converter page

Data Used | Save Save Device Device
Pno Pages |Pages |No Position
Pending

row 4 row 5 - 1861 1 0 0 3 523 \
A e L LU (R

~
~

row 1 row 2 row 3

Data volumes

@ SAP 2009 / MaxDB Internals — B*Trees and No-Reorg Method/ Page 43

During the savepoint the database kernel writes all changed data pages to the data
volumes. It enters the new positions in the converter.

The kernel writes the changed converter pages in the last savepoint phase. The pages are
not written to their original positions. Because the position of the converter pages changes,
the corresponding converter index and converter root are also changed. These pages are
also written to new positions.

When all changed data and converter pages have been written, the position of the
converter root is entered in the restart page. The restart page for the old savepoint is
overwritten in the data volume.

The savepoint is complete when the restart page is written. This ensures that the kernel
can always restart from the last completed savepoint.

43

Advantages of Converter 7.5 compared to 7.3

Operation without System Volume
No hotspot on one volume
Fast restart and fast savepoint through parallel /0

Distinction static — dynamic converter
Ability to recover liveCache instances

Converter in the 1/0 buffer cache
Manual adaptation of the converter cache to the DB size is not necessary

Parallel awarding of free page numbers

Converter may grow and shrink dynamically
Online ADD DATA VOLUME without limitation to MAXDATAPAGES
DROP DATA VOLUME (as of version 7.6)

Highest page number independent of the converter size
Restore to smaller instances just with limitation to the grade of occupied pages

Snapshot support

@ SAP 2009 / MaxDB Internals — B*Trees and No-Reorg Method/ Page 44

44

Free Block Management

FBM: Free Block Manager Volume 1 :
Bit list per data volume device offset | page state backup state
m Used capacity states: 434 | occupied free
- free
_ occupied 1235 | occupied free

m free after savepoint
- Backup states:
- free

_ backup Volume 2:

o device offset | page state backup state
exists in the memory

L : 177 | free after sp | backup
is built during start of the DB

@ SAP 2009 / MaxDEB Internals — B*Trees and MNo-Reorg Method/ Page 45

The Free Block Manager, which only exists in the memory, administers all data devices
using a bit list for each device. This includes the used capacity status and the backup
status. The possible statuses are:

m Free:
The block is free and can be allocated.

m Occupied:
The block is occupied.

m Free after savepoint:
The block can be released after the current savepoint has been successfully completed.

m Backup:
The block belongs to a backup that is in process. When the block has been backed up, that is,
written to the backup medium, the status is reset.

If a block has been selected for a backup in process, the used capacity status of a block
can change. A block can only be reallocated when the used capacity and backup
statuses are both "free."

From version 7.4, the Free Block Manager is part of converter management.

45

Savepoint Phases

Write changed data pages (parallel)

Data Cache

deO (det1 | ... | | dcn

Prevent B* tree operations
Occupy transaction regions /
Write log entry

Remember open transactions

Release all resources

Write changed data pages of the 1st

phase (parallel) %

Write converter pages (parallel)

Write log info and restart page clfc2|... |cn

Increase savepoint version Converter Cache

@ SAP 2009 / MaxDEB Internals — B*Trees and MNo-Reorg Method/ Page 46

The savepoint is a core function of the I/O concept. The illustration shows what happens during a savepoint.

The savepoint writes the data from the data cache and the converter cache to the corresponding data
volumes. Due to the size of the two caches, this cannot be carried out as a synchronous action; the system
would be blocked for too long. There has to be a short phase in which the caches can be securely flushed,
but this must be kept to a minimum.

The standard is for savepoints to occur at intervals of 10 minutes. To minimize the amount of data to be
flushed in the protected section (marked red), the savepoint begins by flushing the data cache parallel to
operation. The data cache is processed by several pagers simultaneously. The largest share of pages is
flushed in this phase.

In the second phase, a flag is set which prohibits clearing operations on B* trees. It is also prohibited to open
new transactions during this phase. All pages that were changed in the course of the first phase are marked
as savepoint relevant. An open trans file is created for open transactions.

In the last phase, all pages that were marked during the second phase are flushed. The flags are reset. First,
all changed pages are written to the data volumes. The savepoint is complete when the restart page is
written. Afterwards the savepoint version (number) is updated.

The protected phase of the savepoint is generally quite short and goes unnoticed by the end user.

46

Backup Phases

Savepoint before the backup starts

The data belonging to one savepoint contains all necessary undo information of open
transactions. Thus the database is transaction consistent. It can be set to ONLINE mode
with a restart without any log.

The savepoint looks for data pages relevant for backup in the converter and sets the
backup flag in the FBM.

Parallel backup through server tasks along the FBM

@ SAP 2009 / MaxDB Internals — B*Trees and No-Reorg Method/ Page 47

Data backups are carried out with a block size of 8 x 8 KB and can be parallelized.

Data backups start with a savepoint. A backup includes the data existing at the time of the
savepoint. Subsequent changes are not included in the backup. The database can write
further savepoints while the backup is in process.

47

Backup along the FBM

Converter page 2 Savepoint 24

Data Device | Device |Page |Save | Saved
Pno No Offset Type | Pages
4711 2 177 P 1 0
4712 1 1235 P 1 0
FBM
device offset | page state backup state
1235 |occupied backup
177 | occupied backup
DATA
—

SAP 2009 / MaxDB Internals — B*Trees and No-Reorg Method/ Page 48

The savepoint that is executed at the start of the data backup determines the savepoint
version of the backup. Through the converter, the data blocks on the data devices that are

valid for this savepoint are determined for all data pages and the backup status is set in
the FBM.

The data backup uses the bit lists of the FBM. There the data blocks are combined into 64
KB I/O units. This procedure executes one task per data volume. The backup status is
reset following each block backup. Data blocks that have been freed for use can only be
reallocated when the backup status has been reset.

48

Parallel Backup

DATA DATA DATA

Qev_ser

8x8k blocking

This illustration depicts a data transfer from the data volumes to the backup media. Each
volume has a task that puts the 64 KB units into a buffer. One task per backup device
reads the blocks from the buffer and stores them on the backup medium.

The limits of this process are posed either by the access speed of the data volumes, the
writing performance of the backup devices or the transport layer (e.g. network) between
the database server and the backup devices. As long as these limits are not reached, the
process scales with any other backup device in parallel operation.

49

Server Tasks and Pager Tasks

Server:
Backup, Create Index, CHECK DATA

Pager:
Read the converter during the restart of the instance
Savepoints
write_ahead of changed data pages from data cache to the data volumes

Are indicated in the Taskcluster with sv and pg (former dw — datawriter).
In the task display (x_cons, CCMS) with server and pager

The auxiliary tasks have reduced stack requirements and should run in one or more
dedicated UKTs.

@ SAP 2009 / MaxDEB Internals — B*Trees and No-Reorg Method/ Page 50

Server tasks or pager tasks have a reduced stack requirement as they do not have to carry
out syntax analysis or related activities, but only process pre-translated requests.

To prevent the server tasks from negatively influencing the user tasks due to their high
throughput, they are created in their own thread (UKT) in the standard.

During times in which a system is working with a moderate to low 1/O load, pager tasks
perform so-called write-ahead operations. This means that data pages that have been
changed in the data cache are written to the data volumes ahead of time, i.e. before a
savepoint or displacement. This in turn means a reduction of the burden on the first phase
of the coming savepoint as there is substantially less I/0O to be handled. In general, a
favorable setting of the pager tasks can ensure a consistently low and largely
asynchronous /O load.

50

Data Cache - Segmentation

SADd

The data cache is divided into segments of the main memory (regions).

Number of regions is adjustable (8 — 1024, the default value depends on the cache
size).

More parallelism by multiplication of regions (MaxDB internal synchronization
mechanism)

Pages are definitely assigned to a segment by a hash function.

During savepoints the segments can be written through in parallel by pager tasks.

@ SAP 2009 / MaxDB Internals — B*Trees and No-Reorg Method/ Page 51

The data cache was divided into segments to enable better SMP support and to accelerate
savepoints. Each segment is secured by its own region. The data pages are uniquely

assigned to a segment, that is, a data page with the page number 4711 (pno), for example,
is always administered in the second cache segment.

As of version 7.6.03 the number of possible segments has increased from 64 to 1024.

51

Snapshot

Freezing the data area
Create Snapshot
Restore Snapshot (ADMIN)
Drop Snapshot
Typical usage:

= Very fast point-in-time recovery (e.g. for SAP upgrades, installation of support
packages)

= Restore of training systems to a defined state

@ SAP 2009 / MaxDB Internals — B*Trees and No-Reorg Method/ Page 52

From version 7.5, you can freeze the data area of a database instance using a snapshot.

In versions 7.5 and 7.6 a snapshot is generated in the ADMIN state. As of 7.7 it is also
possible to create it in ONLINE mode. Later you can reset the data to its state at the time
of the snapshot and/or delete the snapshot.

With the CREATE_SNAPSHOT command, the database kernel copies the restart page
from the second block of the first data volume to another position. The complete converter
is also copied. The original restart record contains a reference to the restart record that
corresponds to the snapshot.

With the command RESTORE_SNAPSHOT, the current converter is deleted. All blocks
that are no longer needed are marked as free in the FBM. The log is formatted such that
the state HISTLOST occurs. At the next restart, the instance works with the data as they
were at the time of the CREATE_SNAPSHOT.

The statement DROP_SNAPSHOT deletes the restart record and the corresponding
converter that is relevant for the snapshot. The FBM marks all blocks that are no longer
needed as free.

Up to 7.6 MaxDB supports only a single snapshot, as of 7.7 several snapshots can be
generated. Operating the instance with one or several snapshot(s) uses more of the
capacity of the data area.

52

Master - Slave with Snapshots

SADd

Master Slave

Data 01.01.2005

Data

Create Snapshot

Restore Snapshot

Data 07.01.2005

| 1

Restore Snapshot

@ SAP 2009 / MaxDEB Internals — B*Trees and MNo-Reorg Method/ Page 53

MaxDB offers the possibility of using snapshots to synchronize a master and one or more
slave instances.

Create the slave instance as a homogeneous system copy using Backup/Restore. Before
the first restart of the slave instance, generate a snapshot.

To transfer changes in the master instance to the slave instance, reset the slave instance
to the snapshot. Then import an incremental backup from the master instance. You can
reset the slave instance to the snapshot as often as you like and import incremental
backups from the master instance.

This procedure works until a complete backup is created in the master instance. Then new
incremental backups no longer match the snapshot in the slave instance. To synchronize it
with the master, you can import a complete data backup into the slave instance.

53

Import table data from a snapshot
(Shared Repository)

Import
Tables

Reader based on CW3

® SAP 2009/ MaxDB Internals — B*Trees and No-Reorg Method!/ Page 54

MaxDB version 7.7 is able to administer several snapshots at the same time.You can
create and drop snapshots in online mode.

An instance (reader) can access to the snapshot of another instance (provider) via the 1/0
interface and import tables logically.

Access to the snapshot is done in read-only mode. Changed blocks of the imported tables
are stored physically in the data volumes of the reader.

In that way using a master system a lot of system copies on the level of tables or schemas,
respectively, can be created. The required space of the reader is basically determined by
the changed blocks.

The readers subject to the usual concept for MaxDB backups whereas only those blocks
are saved that are stored in the reader. For a restore the snapshot of the accordant
provider must be accessible.

The import of a snapshot and the related tables also works within the same instance if a
second schema is used.

54

55

