
1

MaxDB

Introduction to Query Optimization
Release 7.6

Werner Thesing

The task of an optimizer is to find the best search strategy for a given SQL statement.

2

© SAP 2007 /MaxDB 7.6 Internals – Optimizer Introduction/Page 2

Optimization Overview

Optimization

Explain

Strategy Examples

Update Statistics

3

© SAP 2007 /MaxDB 7.6 Internals – Optimizer Introduction/Page 3

Goals of Optimization

Goal: Minimizing resource-consumption like
CPU-time
I/O-load
Memory
Disk space

SQL Commands affected by optimization
SELECT (mass select, single select)
Update
Delete
Insert

4

© SAP 2007 /MaxDB 7.6 Internals – Optimizer Introduction/Page 4

Types of Optimizers

Rule based optimizer
Access strategy is defined through rules at parsing time.
Does not depend on values in the WHERE clause
The rule determines which access type is selected.

Cost based optimizer
Searching strategy is detemined via
– current column content (values)
– indexes available
– estimated count of (page) accesses
‚Lowest cost‘ strategy will be used.

There are two types of optimizers for relational database systems: rule-based and cost-
based optimizers.

The rule-based optimizer works according to certain rules. For example, if an index is
available, this index will be used for access - independent of the values in the WHERE
condition. With the rule-based optimizer, the strategy for processing SQL statements is
decided at the time of parsing.

Cost-based optimizers determine the best search strategy with the help of statistical
information about the size of the table and values within the table columns.

A cost-benefit plan is created for the various access options. The best strategy is chosen
to execute the command depending on the values defined in the WHERE condition.
Therefore, the eventual search strategy can only be determined at the time of execution.

MaxDB supports cost-based optimizers.

A new implementation of the SQL optimizer was introduced in version 7.4. It makes it
makes it easier to maintain the code. New functions can be installed without a great risk of
negative side-effects.

5

© SAP 2007 /MaxDB 7.6 Internals – Optimizer Introduction/Page 5

SELECT ... FROM tab1 WHERE tab1.col1 = 'Walldorf'

Parse Statement

Best Access Path

DDL Information

Value Evaluation

Final Strategy Execution

Information used by Optimization

First, an SQL statement is processed by the parser. This performs a syntactic and
semantic analysis. In the semantic analysis, tables and their column data are checked.

The optimizer determines which primary and secondary keys are available for the table
and checks whether a corresponding key can be used to search for values.

For secondary keys, the number of differing values plays an important role. Example: it
does not make sense to search using an index if there is only one secondary key value, it
is precisely this value that will be searched for, and additional table fields will be queried.

The number of pages that have to be read in the secondary index is determined by
generating a start and a stop key. Depending on the number of pages of the table, it is
decided whether it is worthwhile to search using the index. The number of pages of the
entire table is located in the statistics.

At the end, the strategy with which the SQL statement will be executed is determined.

6

© SAP 2007 /MaxDB 7.6 Internals – Optimizer Introduction/Page 6

SELECT ... FROM tab1, tab2 WHERE tab1.col1 = 'Walldorf'
AND tab1.key1 = tab2.key1

Parse Statement

Best Access Path

DDL Information

Value Evaluation

Statistic Info ColumnBest Join Order

Final Strategy Execution

Information used by Join Optimization

For a JOIN, the optimizer seeks out the most suitable access path for each table.

Then it has to be decided in which order the tables will be processed and connected with
each other. The resulting result sets should be as small as possible. For the join columns,
the values are unknown before the execution. Therefore, the joint optimizer can only work
with the statistical values for columns.

7

© SAP 2007 /MaxDB 7.6 Internals – Optimizer Introduction/Page 7

Which condition will be evaluated ?

Single table select
Column = value
Column <, <=, >=, > value
Column BETWEEN value AND value
Column IN (value, value, ...)
Column LIKE string value (including %,?,...)
Column = (ANY) <subquery>
Column IN <subquery>

Join select
Table1_column = table2_column
Table1_column <, <=, >=, > table2_column
(Condition has to be on the ‚Top-AND-Level‘ of the
<search condition>)

The search conditions that the optimizer can use to determine the optimal search strategy
are the following:

Equality conditions
Range conditions
IN conditions
IN conditions

Here, the search conditions are displayed in the order of their valency. In other words, with
the same preconditions an equality condition is evaluated as being better than an IN
condition.

The SQL Optimizer also converts conditions under certain circumstances. If a single value
is specified in an IN condition multiple times, the condition is converted into an equality
condition.

8

© SAP 2007 /MaxDB 7.6 Internals – Optimizer Introduction/Page 8

Create Table ZZTELE
(NAME CHAR(40),

VORNAME CHAR(20),
STR CHAR(40),
NR INT,
PLZ CHAR(5),
ORT CHAR(25),
CODE CHAR(31),
ADDINFO CHAR(31),
PRIMARY KEY
(NAME,VORNAME,STR))

Create Table ZZTELE
(NAME CHAR(40),

VORNAME CHAR(20),
STR CHAR(40),
NR INT,
PLZ CHAR(5),
ORT CHAR(25),
CODE CHAR(31),
ADDINFO CHAR(31),
PRIMARY KEY
(NAME,VORNAME,STR))

Table Examples: ZZTELE, ZZSTADTTEIL

of records: around 115,000

Create Table ZZSTADTTEIL
(PLZ CHAR(5),

ORT CHAR(25),
STADTTEIL CHAR(40),
PRIMARY KEY
(PLZ))

Create Table ZZSTADTTEIL
(PLZ CHAR(5),

ORT CHAR(25),
STADTTEIL CHAR(40),
PRIMARY KEY
(PLZ))

of records : around 20,000

In the following examples, we use the table ZZTELE with approx. 115,000 records.

For joins and subqueries, the examples also refer to the table ZZSTADTEIL with approx.
20000 records.

9

© SAP 2007 /MaxDB 7.6 Internals – Optimizer Introduction/Page 9

Base data as well as index data (secondary key) is stored in B*tree structures.

Root node (Root) of table ZZTELERoot node (Root) of table ZZTELERoot Level
Page
ñ 8 KByte D S U

Level 1
Pages

Brau Caes Dart Pete... Ste...

Aaron Anton
Steig 5

...
Leaf Level
Pages

Brauner E.
Ilseweg 11

...
Caesar
S.Gartenweg 5

Storing data in a B*tree

The data of the base tables and the indexes are stored in B*Tree format.

When creating a table, the root page is created. A root page can contain a maximum of 8
KB.

If data records are entered in the tables, the root page is filled with what are known as
separators. A separator is made up of the primary key of the data record. However, due to
space limitations, the entire key is not saved as a separator in the root page, but rather
only the part of the key up to the first significant digit in the key. The more significant a key
is, the smaller the separators are and the more separators can be managed in the root
page.

For very small tables, all data records are already stored in the root page. If the root page
is filled, entering additional records in the table will automatically generate an additional
tree level, or what is known as the Level 1 pages level. The root page will then consist only
of separators and pointers to the corresponding lower level containing the information with
a distinguishing separator.

10

© SAP 2007 /MaxDB 7.6 Internals – Optimizer Introduction/Page 10

Primary and Secondary keys (indexes)

Primary key
The primary key is kept on the data tree (clustered)
No separate tree for primary key !
The primary key is used as separator in B*trees
The records are stored in primary key order

Secondary key (index)
Create a separate B*tree for the secondary key
A secondary key does not contain physical addresses pointing to the base data but logical
addresses in terms of primary keys

11

© SAP 2007 /MaxDB 7.6 Internals – Optimizer Introduction/Page 11

Explain (1)

Input : EXPLAIN <Select-Command>
EXPLAIN VIEW < Select-Command >

Output : Description of search strategy

The explain command cannot be used with
UPDATE , DELETE or INSERT commands.

EXPLAIN is used with Select commands that access base tables

EXPLAIN VIEW shows names of tables and indexes a (multiple) (JOIN) view reques is
based on.

EXPLAIN does not execute the specified Select command.

In the ABAP-based SAP application server, EXPLAIN VIEW is available in transactions
ST05 and DB50 (in the command monitor).

You can display the search strategy for INSERT, DELETE and UPDATE commands by
transforming the command into a SELECT. The additional option FOR REUSE ensures
that the results table is stored. Example:

Example:

UPDATE ZZTELE
SET ADDINFO = 'ledig'
WHERE NAME = 'Mueller'
AND VORNAME = ' Egon'
AND STR = ' Wexstraße'

SELECT * FROM ZZTELE
WHERE NAME = 'Mueller'
AND VORNAME = ' Egon'
AND STR = ' Wexstraße'
FOR REUSE

12

© SAP 2007 /MaxDB 7.6 Internals – Optimizer Introduction/Page 12

OWNER TABLENAME COLUMN_OR_INDEX STRATEGY PAGECOUNT

User Table 1

User Table 2 Names of key or
index columns

Name of chosen strategy
for this table

Number of
affected

data pages

RESULT IS (NOT)
COPIED, COSTVALUE IS

Estimated
Costs

Explain (2)

Name of chosen strategy
for this table

Names of key or
index columns

Number of
affected

data pages

EXPLAIN shows:
one block for each table from the SELECT-FROM list
the order of the strategies reflects the order of execution
the order of the strategies reflects the order of execution
COPIED / NOT COPIED --> Results set is generated/not generated
"Estimated costs" provides an estimate about the number of disk accesses (logical I/Os).

The columns O, D, T and M, which were output with older database versions, are no
longer displayed. These columns had specified additional strategies for search conditions.
As of version 7.5, the EXPLAIN statement shows the additional strategies as text in the
STRATEGY column.

13

© SAP 2007 /MaxDB 7.6 Internals – Optimizer Introduction/Page 13

A 1

Base TableIndex

100 200 A 1 A 2 B 1 B 2 B 3

Index List
Secondary Key Primary Key List

100 200ROT Ok Lager 1 5

Primary Key Fieldvalues

Base Record

Search Strategies

Index and base table

A 1

An index contains the data of the secondary key as well as the respective primary key
Using the primary key, the data can be found in the base table. For each index, a B*
tree is created, which is sorted according to the values of the secondary key.

There is no record ID or anything similar. The unique ID of a record is the primary key (or
for multiple keys, the combination of primary key fields).

If no primary key was specified when the table was generated, the database generates the
internal field SYSKEY of the type CHAR(8) BYTE. This field is filled with unique values.

Searching via an index is relatively costly. The access is only worthwhile if less than
approx. 30% of the records can be determined from the index and no results set is
generated.

On the following page you will find examples of search strategies. The list of strategies is
not complete. A complete list of search strategies can be found in the documentation.

Basic Information -> Background Knowledge -> SQL Optimizer -> Search Strategy ->
List of all search strategies

14

© SAP 2007 /MaxDB 7.6 Internals – Optimizer Introduction/Page 14

Base Table

Key Value =

EQUAL CONDITION FOR KEY

SELECT * FROM zztele
WHERE Name = 'Aaron'
AND Vorname = 'Anton'
AND Str = 'Alt Moabit'

EQUAL CONDITION FOR KEY provides an efficient access path through "direct access"
to the base table.

The decision in favor of this strategy will already have been made at the time of parsing
because, independent of the data in the search conditions, no better search strategy is
possible.

15

© SAP 2007 /MaxDB 7.6 Internals – Optimizer Introduction/Page 15

Base Table

STARTKEY

STOPKEY

CONDITION(S) TABLE SCAN RANGE

RANGE CONDITION FOR KEY

SELECT * FROM zztele WHERE Name = 'Schmidt'
AND Vorname like 'A%'

SELECT * FROM zztele

If a portion of the start of the primary key is specified in the WHERE condition, the strategy
RANGE CONDITION FOR KEY will be executed.

If the index and primary key cannot be used, the base table will be searched completely
(TABLE SCAN).

An intermediate result set is not generated.

16

© SAP 2007 /MaxDB 7.6 Internals – Optimizer Introduction/Page 16

Base Table

Key Value 1

Key Value 2

‚Schaefer'

'Schmidt'

IN CONDITION FOR KEY

SELECT * FROM zztele
WHERE Name IN (‘Schaefer', 'Schmidt')

The IN condition can be placed on each field of a primary key.

Only one IN condition is taken into account.

The primary key fields that precede the field with the IN condition may only be specified in
an EQUAL condition.

An intermediate result set is generated. The result set is sorted according to the primary
key.

As of version 7.4, the optimizer checks whether the RANGE CONDITION FOR KEY is
advantageous. This happens if the values in the IN condition are close to each other.
Example:

SELECT *
FROM zztele
WHERE name IN ('Schaefer' , 'Schmidt')

There are additional names in the table that are located between the values 'Schaefer' and
'Schmidt'. There are additional names in the table that are located between the values
'Schaefer' and 'Schmidt'. Thus, using this search condition, records are also included that
do not belong to the results set. However, the strategy is more favorable since only one
start and stop key have to be determined.

17

© SAP 2007 /MaxDB 7.6 Internals – Optimizer Introduction/Page 17

Key Value 1
Key Value 1
Key Value 1
Key Value 2
Key Value 3
Key Value 3
Key Value 4

Internal
Subquery
File

Base Table

RANGE CONDITION FOR KEY (SUBQUERY)

CREATE INDEX "ZZSTADTTEIL~1" ON ZZSTADTTEIL(STADTTEIL)

SELECT * FROM zztele WHERE name IN
(SELECT stadtteil FROM zzstadtteil

WHERE stadtteil = 'Ahlheim')

If a subquery returns primary key values, EQUAL CONDITION FOR KEY or RANGE
CONDITION FOR KEY is used on the base table. The result set is sorted according to
primary key values.

An intermediate result set is generated.

18

© SAP 2007 /MaxDB 7.6 Internals – Optimizer Introduction/Page 18

Index

Secondary Key Primary Key List

SELECT name, plz
FROM zztele

WHERE plz = '12345'

Base Table

Exceptions :

- OR Term as part of the WHERE clause

- No index SCAN, if the index exceeds the size of
the base table

- Efficient primary key strategy for the base table

plz name

12345 Antoa Dry Huebel Marek ...

ONLY INDEX ACCESSED

Kernel parameter: OPTIM_INV_ONLY

If a SELECT statement only addresses columns that are also contained in an index
(SELECT list, WHERE clause), then only this index will be accessed for the execution of
the command.

Advantage:
In some cases, significantly fewer pages that have to be searched

Optimal usage of sorting of secondary and primary keys in the index

No additional access to the base table

No determination of access costs (only for the join)

Exceptions:
OR term in the WHERE condition

No index SCAN if the index is larger than the base table

Efficient primary key strategy via the base table

19

© SAP 2007 /MaxDB 7.6 Internals – Optimizer Introduction/Page 19

Base Table

Single
Index

Index List

12047

primary key list

EQUAL CONDITION FOR INDEX

CREATE INDEX "ZZTELE~3" ON ZZTELE(PLZ)

SELECT * FROM zztele
WHERE plz = '10559'

Efficient access path for fields with greater selectivity

When determining the strategy, additional costs (index_overhead) for accessing the base
data via the index are taken into account.

The optimizer also opts for the strategy EQUAL CONDITION FOR INDEX, if all fields of a
multiple index in the WHERE condition are specified with an equality condition.

An intermediate result set is not generated.

20

© SAP 2007 /MaxDB 7.6 Internals – Optimizer Introduction/Page 20

Index List
val 1

Index List
val 3

primary key list

primary key list
Base Table

Single
Index

Value 1
Value 1
Value 1
Value 2

Value 3
Value 3
Value 4

Internal
Subquery
File

EQUAL CONDITION FOR INDEX (SUBQUERY)

CREATE INDEX "ZZTELE~3" ON ZZTELE(PLZ)
SELECT * FROM zztele WHERE plz IN
(SELECT plz FROM zzstadtteil WHERE plz = '12047')

The result set is sorted according to the secondary key sequence. If only values from the
index are queried, the Only Index strategy is used.

An intermediate result set is generated.

21

© SAP 2007 /MaxDB 7.6 Internals – Optimizer Introduction/Page 21

Index List
100

Index List
200

primary key list

primary key list

Index List
150

primary key list

Single
Index

Merged
List Base Table

Kernel parameter: OPTIM_MAX_MERGE

RANGE CONDITION FOR INDEX

CREATE INDEX "ZZTELE~3" ON ZZTELE (STR, NR)

SELECT * FROM zztele WHERE str = 'Wexstr'
AND nr BETWEEN 20 AND 23
ORDER BY name, vorname, str

The result set is sorted according to the primary key.

Using the additional strategy TEMPORARY INDEX CREATED, the primary keys are
sorted in a merge list. The optimum cache usage is guaranteed using access to the base
data in the order of the primary keys.

The maximum size of the merge lists that are generated can be configured using the
parameter OPTIM_MAX_MERGE.

An intermediate result set is not generated.

22

© SAP 2007 /MaxDB 7.6 Internals – Optimizer Introduction/Page 22

Index List
3

Index List
255

primary key list

primary key list
Base Table

Multiple
Index

IN CONDITION FOR INDEX

CREATE INDEX "ZZTELE~3" ON ZZTELE (STR, NR)
SELECT * FROM zztele
WHERE str = 'Wexstr' AND nr IN (3, 255)

A secondary key can be taken into account for an IN condition. Only one IN condition is
taken into account.

The secondary key fields that precede the field with the IN condition may only be specified
in an EQUAL condition.

The result set is sorted according to the secondary key.

The Only Index strategy can be used.

An intermediate result set is generated.

23

© SAP 2007 /MaxDB 7.6 Internals – Optimizer Introduction/Page 23

primary key list

Index List

Index List

primary key list

Base Table

Index

INDEX SCAN

CREATE INDEX "ZZTELE~2" ON zztele (str, nr)
SELECT * FROM zztele WHERE name BETWEEN 'A' and 'D'

ORDER BY str, nr

During an INDEX SCAN, all entries are read via the index in the order of the secondary
key. An intermediate results set is not generated.

As of version 7.4, NULL values are also included in single indexes. Thus, this strategy can
be used on all indexes.

If a Table Scan is to be carried out for an ORDER BY because no index can be used, an
intermediate results set is generated.

24

© SAP 2007 /MaxDB 7.6 Internals – Optimizer Introduction/Page 24

DIFFERENT STRATEGIES FOR OR-TERMS

CREATE INDEX "ZZTELE~3" ON ZZTELE(PLZ)
SELECT * FROM zztele
WHERE name= 'Aaron'
OR plz = '12345'

OR Term1
Strategy :

RANGE
CONDITION
FOR KEY COLUMN

OR Term1
Strategy :

RANGE
CONDITION
FOR KEY COLUMN

OR Term2
Strategy :

EQUAL CONDITION
FOR INDEXED
COLUMN

OR Term2
Strategy :

EQUAL CONDITION
FOR INDEXED
COLUMN

Result

Nested OR terms are analyzed down to the third level.

The strategy search is only carried out if there is no adequate strategy on the highest level.

If the costs of the strategy search exceed the costs determined for the highest level, the
strategy search is discontinued.

An intermediate result set is generated.

Within the SAP environment, similar statements are also generated by SELECTS with
RANGES.

25

© SAP 2007 /MaxDB 7.6 Internals – Optimizer Introduction/Page 25

NO STRATEGY NOW (ONLY AT EXECUTION
TIME)

Strategy will be determined first during execution of the command

Is displayed for queries if the access path will be determined first when they are
executed

Is displayed for queries containing sub-queries or correlated sub-queries: strategy will
first be determined when interim results become available.

26

© SAP 2007 /MaxDB 7.6 Internals – Optimizer Introduction/Page 26

Accessing the
first base table
with one of the
strategies

Final ResultInterim
Result

Join with the
subsequent
base table

Join Strategies (1)

SELECT * FROM zztele, zzstadtteil
WHERE zztele.Plz = zzstadtteil.Plz
AND zztele.Ort = zzstadtteil.Ort
AND zztele.name = 'Mueller'

The costs for a join are based on information about the value distribution.

In general, the costs of a join decrease as the number of joined columns increases.

For joins, an intermediate result set is always generated.

27

© SAP 2007 /MaxDB 7.6 Internals – Optimizer Introduction/Page 27

Join Strategies (2)

SELECT * FROM scantab, jointab
WHERE scantab.A = jointab.Col1
AND scantab.B = jointab.Col2

Join Strategy Meaning

col1 is the sole primary key columnJOIN VIA KEY COLUMN
col2 is a standard column

col1 is the first primary key columnJOIN VIA KEY RANGE
col2 is a standard column

col1 is the first primary key columnJOIN VIA MULTIPLE KEY
COLUMNS col2 is the last primary key column

JOIN VIA RANGE OF MULTIPLE
KEY COLUMNS col2 is the second primary key column

col1 is the first primary key column

28

© SAP 2007 /MaxDB 7.6 Internals – Optimizer Introduction/Page 28

Join Strategies (3)

SELECT * FROM scantab, jointab
WHERE scantab.A = jointab.Col1
AND scantab.B = jointab.Col2

Join Strategy Meaning

col1 is a single index columnJOIN VIA INDEXED COLUMN
col2 is a standard column

col1 is the first column of a multiple indexJOIN VIA MULTIPLE
INDEXED COLUMNS col2 is the last column of a multiple index

JOIN VIA RANGE OF
MULTIPLE INDEXED
COLUMNS

col1 is the first column of a multiple index
col2 is the second column of a multiple index

29

© SAP 2007 /MaxDB 7.6 Internals – Optimizer Introduction/Page 29

Join Across two Tables (Sorted Merge)

CREATE INDEX "ZZTELE~3" ON ZZTELE(PLZ)
CREATE INDEX "ZZSTADTTEIL~1" ON ZZSTADTTEIL(STADTTEIL)
SELECT * FROM zztele, zzstadtteil
WHERE zztele.plz = zzstadtteil.plz
AND zzstadtteil.stadtteil = 'Moabit'

Interim Result 1

ZZSTADT
TEIL~1

zzstadt
teil

ZZTELE~3

ZZTELE

Final result

For a join across multiple tables (Sorted Merge), a result set is generated from the first
table that is to be processed. Using this result, the join transition is performed on the
second table.

A sorted merge is characterized by low CPU consumption. If the intermediate results do
not fit in the cache, the subsequent reading of these results into the cache can be costly.

30

© SAP 2007 /MaxDB 7.6 Internals – Optimizer Introduction/Page 30

Join Across two Tables (Nested Loop)

CREATE INDEX "ZZTELE~3" ON ZZTELE(PLZ)
CREATE INDEX "ZZSTADTTEIL~1" ON ZZSTADTTEIL(STADTTEIL)
SELECT * FROM zztele, zzstadtteil
WHERE zztele.plz = zzstadtteil.plz
AND zzstadtteil.stadtteil = 'Moabit'

ZZSTADT
TEIL~1

zzstadt
teil

ZZTELE~3

ZZTELE

Final result

Kernel parameter: JOIN_OPERATOR_IMPLEMENTATION

The nested loops procedure is particularly advantageous when generating aggregates.

A nested loop forgoes the generation of intermediate results sets. The CPU load is,
however, greater than with a sorted merge.

The strategy "NO TEMPORARY RESULTS CREATED" indicates that nested loop was
executed.

31

© SAP 2007 /MaxDB 7.6 Internals – Optimizer Introduction/Page 31

Hash Join

CREATE INDEX "ZZTELE~3" ON ZZTELE(PLZ)
SELECT zztele.plz FROM zztele, zzstadtteil
WHERE zztele.plz = zzstadtteil.plz
AND zzstadtteil.stadtteil = 'Moabit'

Kernel parameter: MAX_HASHTABLE_MEMORY + MAX_SINGLE_HASHTABLE_SIZE

ZZTELE

ZZSTADTTEIL

Hash
tab

The hash join strategy is employed when a join transition to a small table is done and it is
probable that a large number of records needs to be read from the small table.

In this case it would be faster to import the small table once and generate a temporary has
table. Searching for the keys in a hash table is faster than searching via the B* tree of the
table.

The strategy "TABLE HASHED" identifies the join via a hash table.

32

© SAP 2007 /MaxDB 7.6 Internals – Optimizer Introduction/Page 32

Hints

Hints provide the Optimizer with rules that it can use if necessary.

Example:
SELECT /*+ORDERED*/ zztele.plz
FROM zztele, zzstadtteil
WHERE zztele.plz = zzstadtteil.plz

AND zzstadtteil.stadtteil = 'Moabit‚

Hints are supported as of:
MaxDB Version 7.5
WebAS ABAP Version 6.20

MaxDB supports the following hints, the meaning of which can be extracted from SAP note
832544:
KEYACCESS, KEYRANGE, INDEXACCESS[(<INDEXNAME>)] , KEYSCAN,
INDEXSCAN, INDEXRANGE, BUILDRESULT, FETCHRESULT, DISABLE_INVONLY,
IN_STRATEGY, SUBQ_STRATEGY, TRACE, ORDERED, COORDINATOR_JOIN,
OPERATOR_JOIN, PARALLEL_SERVER(<unsigned integer>), NOACCESSPATH,
ACCESS=<access hint list>, BUFFERSIZE, QUERYREWRITE_OP ,
QUERYREWRITE_STMT, QUERYREWRITE_NO

33

© SAP 2007 /MaxDB 7.6 Internals – Optimizer Introduction/Page 33

Update Statistics (1)

UPDATE STAT[ISTICS] [<owner>.]<table_name>
([ESTIMATE SAMPLE <unsigned_integer> <PERCENT,ROWS>])

To determine the best possible access path, in particular for joins, the Optimizer
requires statitistical information. If such information is not kept current, the system
may make erroneous strategic decisions.

UPDATE STATISTICS determines values about the size of a table as well as the size
and value distribution of indexes.

UPDATE STATISTICS should be executed following large-scale change transactions
(INSERT/LOAD, UPDATE, DELETE).

Start using the DBM command sql_updatestat and sql_updatestat_per_systemtable
or via the CCMS (transactions DB13, DB21).

As of version 7.5, MaxDB requires statistics data only for joins and selects with a restriction of the records in
the result, such as „WHERE ROWNUM <= n“.

For the table itself, Update Statistics only determines data if the current size information is not alreayd in the
file directory. This does not apply to table created with databses of versions < 7.6 and for which no size
information could yet be determined in the file directory.

Update Statistics determines statistics data for all coumns that are primary key or index columns. It also
determines the statistics data for all columns outside of the primary key and the index, if statistics are
available.

When the Optimizer discovers tables with blunderous statistics data, it enters them in the table
SYSUPDSTATWANTED. The DBM command sql_updatestat_per_systemtable executes Update
Statistics for all tables listed in SYSUPDSTATWANTED.

The DBM command executes Update Statistics for all tables in the database.

Update Statistics imports the data for a table from all data volumes in parallel. This makes it very speedy.

As of version 7.6, the sampling procedure in the standard uses a new algorithm for calculating the statistics
data. You can determine the algorithm to be used with the parameter UPDATESTAT_SAMPLE_ALGO.
The new algorithm generates more accurate statistics with fewer records read.

The programs "xpu" and "updcol" are no longer available as of version 7.6.

34

© SAP 2007 /MaxDB 7.6 Internals – Optimizer Introduction/Page 34

Update Statistics (2)

ALTER TABLE <table_name>
SAMPLE <unsigned_integer> <PERCENT,ROWS>

The default value for the number of rows to be included when determining the
statistics is stored in the database catalog.

This value can be changed either directly with ALTER TABLE or using transaction
DB50 -> Problem Analysis -> Tables/Views

For tables that grow and shrink very quickly, such as spool tables, for example, it is a good
idea to set the sampling rate to 0. This prevents Update Statistics from being requested
and executed for these tables.

For tables that were created with versions < 7.6, the counters for size data in the file
directory after upgrade to version 7.5 are not yet available. You can determine the
counters with a CHECK DATA in the ADMIN state or with CHECK TABLE WITH
SHARE LOCK. CHECK TABLE sets a share lock for the duration of the check.

After the upgrade from versions < 7.6 to versions >= 7.6, all table names are transferred to
the table SYSUPDATECOUNTERWANTED. With every restart, the database attempts
to determine the counters for all remaining tables in SYSUPDATECOUNTERWANTED
for the file directory. A share lock is set on a table during processing. Determination of
the counters is immediately terminated for a table if the share lock causes a lock
collision.

35

© SAP 2007 /MaxDB 7.6 Internals – Optimizer Introduction/Page 35

Update Statistics (3)

SELECT * FROM OPTIMIZERSTATISTICS
WHERE tablename = '...‘

Shows the current statistic values that will be used by the optimizer to determine the strategy.

The Optimizer only uses the statistics data for tables only if the counters for size data are
not in the file directory.

36

© SAP 2007 /MaxDB 7.6 Internals – Optimizer Introduction/Page 36

Counters in the File Directory

SELECT f.type, r.tablename, r.indexname, f.entrycount,
f.treeindexsize, f.treeleavessize, f.lobsize

FROM files f, roots r
WHERE f.fileid = r.tableid
AND r.tablename IN ('ZZTELE')

Displays the current counter values in the file directory.

The values for TREENINDEXSIZE, TREELEAVESIZE and LOBSIZE are entered in KB.

For tables, ENTRYCOUNT shows the number of records per table. For indexes,
ENTRYCOUNT shows the number of different values for the secondary key.

37

© SAP 2007 /MaxDB 7.6 Internals – Optimizer Introduction/Page 37

Optimizer restrictions

Maximum number of JOIN tables in SELECT Commands 256

Maximum number of JOIN connections 32767

Maximum number of ORDER columns 128

Maximum number of strategies 127

Maximum number of primary key columns 20
within a strategy

Maximum number of OR terms 50

An overview of general restrictions can be found in the reference handbook in the
Restrictions chapter.

38

© SAP 2007 /MaxDB 7.6 Internals – Optimizer Introduction/Page 38© SAP 2007 /MaxDB 7.6 Internals – Optimizer Introduction/Page 38

Thank you!

39

© SAP 2007 /MaxDB 7.6 Internals – Optimizer Introduction/Page 39© SAP 2007 /MaxDB 7.6 Internals – Optimizer Introduction/Page 39

Copyright 2007 SAP AG
All rights reserved

No part of this publication may be reproduced or transmitted in any form or for any purpose without the express permission of SAP AG. The information contained herein may be changed
without prior notice.
Some software products marketed by SAP AG and its distributors contain proprietary software components of other software vendors.
SAP, R/3, mySAP, mySAP.com, xApps, xApp, SAP NetWeaver, Duet, Business ByDesign, ByDesign, PartnerEdge and other SAP products and services mentioned herein as well as their
respective logos are trademarks or registered trademarks of SAP AG in Germany and in several other countries all over the world. All other product and service names mentioned and
associated logos displayed are the trademarks of their respective companies. Data contained in this document serves informational purposes only. National product specifications may vary.

The information in this document is proprietary to SAP. This document is a preliminary version and not subject to your license agreement or any other agreement with SAP. This document
contains only intended strategies, developments, and functionalities of the SAP® product and is not intended to be binding upon SAP to any particular course of business, product strategy,
and/or development. SAP assumes no responsibility for errors or omissions in this document. SAP does not warrant the accuracy or completeness of the information, text, graphics, links, or
other items contained within this material. This document is provided without a warranty of any kind, either express or implied, including but not limited to the implied warranties of
merchantability, fitness for a particular purpose, or non-infringement.
SAP shall have no liability for damages of any kind including without limitation direct, special, indirect, or consequential damages that may result from the use of these materials. This limitation
shall not apply in cases of intent or gross negligence.
The statutory liability for personal injury and defective products is not affected. SAP has no control over the information that you may access through the use of hot links contained in these
materials and does not endorse your use of third-party Web pages nor provide any warranty whatsoever relating to third-party Web pages

Weitergabe und Vervielfältigung dieser Publikation oder von Teilen daraus sind, zu welchem Zweck und in welcher Form auch immer, ohne die ausdrückliche schriftliche Genehmigung durch
SAP AG nicht gestattet. In dieser Publikation enthaltene Informationen können ohne vorherige Ankündigung geändert werden.
Einige von der SAP AG und deren Vertriebspartnern vertriebene Softwareprodukte können Softwarekomponenten umfassen, die Eigentum anderer Softwarehersteller sind.
SAP, R/3, mySAP, mySAP.com, xApps, xApp, SAP NetWeaver, Duet, Business ByDesign, ByDesign, PartnerEdge und andere in diesem Dokument erwähnte SAP-Produkte und Services
sowie die dazugehörigen Logos sind Marken oder eingetragene Marken der SAP AG in Deutschland und in mehreren anderen Ländern weltweit. Alle anderen in diesem Dokument erwähnten
Namen von Produkten und Services sowie die damit verbundenen Firmenlogos sind Marken der jeweiligen Unternehmen. Die Angaben im Text sind unverbindlich und dienen lediglich zu
Informationszwecken. Produkte können länderspezifische Unterschiede aufweisen.

Die in diesem Dokument enthaltenen Informationen sind Eigentum von SAP. Dieses Dokument ist eine Vorabversion und unterliegt nicht Ihrer Lizenzvereinbarung oder einer anderen
Vereinbarung mit SAP. Dieses Dokument enthält nur vorgesehene Strategien, Entwicklungen und Funktionen des SAP®-Produkts und ist für SAP nicht bindend, einen bestimmten
Geschäftsweg, eine Produktstrategie bzw. -entwicklung einzuschlagen. SAP übernimmt keine Verantwortung für Fehler oder Auslassungen in diesen Materialien. SAP garantiert nicht die
Richtigkeit oder Vollständigkeit der Informationen, Texte, Grafiken, Links oder anderer in diesen Materialien enthaltenen Elemente. Diese Publikation wird ohne jegliche Gewähr, weder
ausdrücklich noch stillschweigend, bereitgestellt. Dies gilt u. a., aber nicht ausschließlich, hinsichtlich der Gewährleistung der Marktgängigkeit und der Eignung für einen bestimmten Zweck
sowie für die Gewährleistung der Nichtverletzung geltenden Rechts.
SAP übernimmt keine Haftung für Schäden jeglicher Art, einschließlich und ohne Einschränkung für direkte, spezielle, indirekte oder Folgeschäden im Zusammenhang mit der Verwendung
dieser Unterlagen. Diese Einschränkung gilt nicht bei Vorsatz oder grober Fahrlässigkeit.
Die gesetzliche Haftung bei Personenschäden oder die Produkthaftung bleibt unberührt. Die Informationen, auf die Sie möglicherweise über die in diesem Material enthaltenen Hotlinks
zugreifen, unterliegen nicht dem Einfluss von SAP, und SAP unterstützt nicht die Nutzung von Internetseiten Dritter durch Sie und gibt keinerlei Gewährleistungen oder Zusagen über
Internetseiten Dritter ab.
Alle Rechte vorbehalten.

