
1

MaxDB

Logging
Release 7.6

Heike Gursch
Werner Thesing

2

© SAP 2007 / MaxDB 7.6 Internals – Logging / Page 2

Overview Logging

Log Configuration

Log Backups / Overwrite Mode for the Log Area

Log Volumes

Log Full

Redo and Undo Log Entries

Log Queue Management

DDL Statements

DML Statements

Savepoint

Transaction Handling

Parallel Restore Log / Restart

DBIdent

Homogeneous System Copy / Shadow Instance

Hot Standby

3

© SAP 2007 / MaxDB 7.6 Internals – Logging / Page 3

Log Configuration

Log area

Configuration parameter: Value:
LOG_MIRRORED YES/NO
MAXARCHIVELOGS 1-32

DBM commands to configure a mirrored log :
param_put LOG_MIRRORED YES
db_admin
db_execute RESTORE LOG VOLUME ‘<log volume>'

Archive Log
Archive Log

Log volume

Archive Log
Archive Log

Log volume

In the basic configuration, MaxDB writes all data changes to the log area. The log area consists of 1 to 32 log
volumes.

The log area is overwritten in cycles. Before it can be overwritten, an area must be backed up. This does not apply
to open transactions as the undo log entries for changes are recorded in the data area. At least one savepoint has
to have taken place before the log entries can be overwritten.

In systems in which the database has to ensure that data is persistent, the log volumes must be mirrored. This
mirroring can be done by MaxDB. If the parameter LOG_MIRRORED is set to NO, the log must be completely
mirrored with operating system functions or by the hardware (RAID 1).

If there is no copy of the log, disk error results in loss of data.

For security and performance reasons, RAID 5 is not recommended. Striping the disks for the log volumes is only
advisable if the disk system works with a large cache and the log volumes have been mirrored. The disk system
cache should be large enough that the writing of log pages does not have to wait for physical disk I/Os.

The parameter MAXARCHIVELOGS indicates the maximum number of log volumes. The log areas can be
expanded up to this number in online mode.

If the log area is mirrored by the database, the failure of a log volume causes an emergency shutdown. A new disk
is then needed. The new log volume can be integrated in the ADMIN state.
From version 7.4, the log volume can no longer be integrated in the ONLINE state.

4

© SAP 2007 / MaxDB 7.6 Internals – Logging / Page 4

Log Backups

2

3

4

5

6

7

Save log1

Lo
g

se
gm

en
t 1

Lo
g

se
gm

en
t 2

Lo
g

se
gm

en
t 3

Log segments

Configuration parameter: Value:
LOG_SEGMENT_SIZE 0 = 1/3 Log area

(Unit: 8KB pages)

LOG_0001

LOG_0002

LOG_0003

archive_stage

The log is divided into fixed-length segments.

This segmentation does not represent a physical division of the log.

Log segments are backup units. They specify the size of the files in which the log pages are backed up. The
database parameter LOG_SEGMENT_SIZE indicates the size of a log segment in log pages.

If the size 0 is entered for the kernel parameter LOG_SEGMENT_SIZE, the database manager automatically
calculates 1/3 of the of the total log area. If the log is expanded online, this does not change the size of the log
segments.

Log segments are NOT closed by a savepoint.

Interactive log backup backs up all completed segments (segment-by-segment) and the log pages of the segment
that is not set complete. So there can be backup files that are smaller than LOG_SEGMENT_SIZE.

The segment size is no more than half of the log area.

SAP recommends saving log backups in backup files in a file system. These backup files can then be transferred
to a backup tape with the Database Manager command archive_stage. External backup tools are supported.

5

© SAP 2007 / MaxDB 7.6 Internals – Logging / Page 5

Automatic Log Backup

2

3

4

1

Lo
g

se
gm

en
t 1

Autosave
log

Log segments

LOG_0001
archive_stage

...

Configuration parameter: Value:
LOG_SEGMENT_SIZE 0 = 1/3 Log area

DBM command:
autolog_on [<medium>] [INTERVAL <interval in seconds>]

The database kernel can create the log backup automatically.

You activate automatic log backup with the dbmcli command autolog_on.

The log backup is automatically created asynchronously upon completion of a segment.

A segment is completed when the following inequality is fulfilled:
Logpno of write pos – Last Logpno of last Segment > Segmentsize

The log backup is created using two server tasks: One server task reads the log pages from the log area and the
other writes the log pages to the backup files.

As of MaxDB version 7.6.02 also a time interval may be set to launch the automatic log backup along this interval.

6

© SAP 2007 / MaxDB 7.6 Internals – Logging / Page 6

Overwrite Mode for the Log Area (without
Backup)

Log area

DBM command (in state ONLINE or ADMIN):
db_execute SET LOG AUTO OVERWRITE ON/OFF

Archive Log
Archive Log

Log volume

Archive Log
Archive Log

Log volume

BACKUP

The log can be overwritten automatically without log backups. Use the DBM command „util_execute SET LOG
AUTO OVERWRITE ON“ to set this status.

The behavior of the database corresponds to the log mode DEMO in older versions. From version 7.4.3, this
behavior can be configured online.

Log backups are not possible after activating automatic overwrite. The backup history is then circumvented; this is
indicated in the backup history by the identifier HISTLOST (file dbm.knl).

The backup history starts again when you deactivate automatic overwrite without log backup using the command
„db_execute SET LOG AUTO OVERWRITE OFF“ and create a complete log backup in the ADMIN or ONLINE
state. Remember to reactivate automatic log backup when this is desired.

Automatic overwrite of the log area without log backups is NOT suitable for production operation. As there
is no backup history for the subsequent changes in the database, it may not be possible to redo transactions in
case of a recovery.

Advantages compared to the log mode DEMO in version 7.3:
Automatic overwrite of the log area without log backups can be switched on and off in online mode.
A complete data backup in online mode restarts the backup history.
Automatic overwrite of the log area without log backups can be activated despite mirrored log volumes. Thus with the command
„db_execute SET LOG AUTO OVERWRITE OFF“, the mirrored log is not reconfigured.

7

© SAP 2007 / MaxDB 7.6 Internals – Logging / Page 7

Disabling Logwriter

DBM command in state ADMIN:
db_execute SET LOG WRITER OFF/ON

Archive Log
Archive Log

Log volume

UKTUKT

logwriter

dbmcli ...
db_admin
db_execute set log writer off
db_online -> log writer off

db_admin
db_execute set log writer on
db_online oder db_admin -> log writer on

-> History lost
backup_start <med> data -> History OK

From version 7.4, it is possible to switch off the log writer. This is now allowed because the database is made
consistent with each savepoint. A restart is possible without the log because all open transactions can be redone
on the basis of the last savepoint.

You switch the log writer off with the DBM command „db_execute SET LOG WRITER OFF“. To do so, start the
database in the ADMIN state.

Log backups are not possible after the log writer has been switched off. The backup history is interrupted, as
indicated by the identifier HISTLOST.

The backup history restarts when you reactivate the log writer with the DBM command “db_execute SET LOG
WRITER ON“ in the state ADMIN and create a complete log backup in the ADMIN or ONLINE state. Remember to
reactivate automatic log backup when this is desired.

The log writer may not be switched off for production operation. The function serves to accelerate
administration tasks such as upgrades and big load jobs.

8

© SAP 2007 / MaxDB 7.6 Internals – Logging / Page 8

Log Volumes

1 I/O manager page
1 Info page

Log Area

Log entries

I/O Man Info

oldest not
saved

write pos.
reserved reservedReserved pages

cycle

I/O Man

Log pages are always 8KB. They are written from the memory to the volume when the are full or when a log entry
ends a transaction (COMMIT, ROLLBACK).

The log area is overwritten in cycles. Log pages can only be overwritten when they have been backed up.
(Exception: SET LOG AUTO OVERWRITE ON).

In the header of the log there are two pages that are not cyclically overwritten.

The first page contains information from the I/O manager, for example the volume number and the numbers of the
predecessor and successor volumes, if available.

Positions are administered on the info page. These include:
the current write position,
the position to which overwriting can proceed,
the position that has not yet been backed up,
the number of the last log backup.

The info page is written to the volume with each savepoint and, as a precaution, every 500 log pages.

If the current write position reaches the page up to which may be overwritten, the log is full. In this case, the
database allows no further write transactions. Clients can still log on, however, as, from version 7.4, a connect is
not written in the log.

The reserve pages cannot be filled with normal log entries. Following a log full status, at the next successful restart
the first unused page is filled with a savepoint.

9

© SAP 2007 / MaxDB 7.6 Internals – Logging / Page 9

Log Full

Log area

reserved

ADD LOG VOLUME

BACKUP

write pos.
oldest not
saved

When the log has reached its capacity, creating a log backup is the only way to continue working in online mode. A
log backup can be created in the ADMIN or ONLINE state. A log backup can also be created by activating
automatic log backup.

If the database has the Log Full status, this is not reset by an expansion of the log area. The current write position
is merely moved sequentially. It is not moved from the middle of a log volume to the beginning of the subsequent
log volume.

If the log are is expanded through the addition of a new log volume, the new volume is only written when the
current write position comes out of the last page of the predecessor volume.

When the Log Full status occurs, the database kernel writes a savepoint. Log entries can only be overwritten if
they have been backed up and the position of the last savepoint in still in the log area (Exception: SET LOG AUTO
OVERWRITE ON).

10

© SAP 2007 / MaxDB 7.6 Internals – Logging / Page 10

Transaction Management

CONNECT:

COMMIT:

ROLLBACK:

COMMIT
RELEASE:

ROLLBACK
RELEASE:

Start of a MaxDB session
Implicit start of a transaction
No entry in log volume

Successful end of a transaction
Implicit start of a new transaction
Entry in log volume (only after changes)

Rollback of a transaction
Implicit start of a new transaction
Entry in log volume (only after changes)

Successful end of a transaction
End of the MaxDB session
Entry in log volume (only after changes)

Rollback of a transaction
End of the MaxDB session
Entry in log volume (only after changes)

11

© SAP 2007 / MaxDB 7.6 Internals – Logging / Page 11

Redo and Undo Log Entries

Data Cache

tab1

Undo Log Files

K1,Y
UKT

user 1
user 2 Log

Queue

UPDATE tab1
set col1 = ‘Y’
where key = ‘K1’

Transaction List

trans 45

trans 48

trans 33

trans 51
K1,XUpd

K1,Y
Upd

user 3
user 4

MaxDB administers redo and undo logs separately.

In the present example, user session 2 is working in transaction 33. It is updating a record in the table "tab1".

Transaction 33 has a link to an undo log file. The user enters the field values that were valid before the update into
the undo log file with the action update and the primary key of the record. Each transaction uses its own undo
log file. This prevents collisions from taking place while accessing undo log files.

The user copies the new field values together with the action and the primary key of the record into log queue.

Undo log entries enable you to roll back a transaction.

The redo log entries enable the complete recovery of data following a crash or disk errors.

12

© SAP 2007 / MaxDB 7.6 Internals – Logging / Page 12

UKT

End of Transaction - Commit

tab1

Undo Log Files

K1,Y

Log
Queue

K1,XUpd

K1,Y
Upd

Log

C

UKT

logwriter
Upd K1,Y
C

Data Cache

GC
GC

UKT

user 1
user 2

user 3
user 4

History File

In the present case, the transaction is closed with a commit.

The user enters the commit in the log queue and activates the log writer.

The log writer reads all pages that contain entries of the transaction and were not yet written from the log queue
and writes them to the log volume.

The user deletes the undo log file when the log writer has confirmed the successful write operation for the commit.

As of version 7.6, Garbage Collectors regularly check the history file every few seconds. They delete the undo log
files found there. Thus the user task is disburdened by the delete operation of the undo log entries. The
database can then confirm the Commit to the application more quickly.

13

© SAP 2007 / MaxDB 7.6 Internals – Logging / Page 13

Ending a Transaction with a Rollback

tab1

Undo Log Files

K1,X

Log
Queue

K1,XUpd

K1,Y
Upd

Log

R

UKT

logwriter
Upd K1,Y
R

Data Cache

UKT

GC
GC

UKT

user 1
user 2

user 3
user 4

History File

In the present case, the transaction is closed with a commit.

In a rollback, the user first retracts all the changes to the table data that are listed in the undo log file.

The user enters the commit in the log queue and activates the log writer.

The log writer reads all pages that contain entries of the transaction and were not yet written from the log queue
and writes them to the log volume.

The user deletes the undo log file when the log writer has confirmed the write operation to the log volume.

As of version 7.6, Garbage Collectors regularly check the history file every few seconds. They delete the undo log
files found there. Thus the user task is disburdened by the delete operation of the undo log entries. The
database can then confirm the Rollback to the application more quickly.

14

© SAP 2007 / MaxDB 7.6 Internals – Logging / Page 14

Consistency of a Transaction at Savepoint
Time

tab1

Undo Log Files

K1,Y

Log
Queue

Transaction List

trans 45

trans 48

trans 33

trans 51 K1,XUpd

K1,Y
Upd

LogUKT

logwriter

Data Data

History File

Restart

Data CacheCUKTUKT

user 1
user 2

user 3
user 4

Undo log files consist of one or more permanent data pages. A savepoint handles them just like data pages with
table and index information; in other words, they are written to the data volumes.

History administration notes the first page of each undo log file in the history file. The first page of the history file is
recorded in the restart page at the end of the savepoint. So a restart can start at the last savepoint and find the
actions of all open transactions.

With a savepoint, the database writes a status in the volumes that can be reassumed without use of the log.

If the savepoint is created for a data backup, this data backup can be imported into another instance as a system
copy. The data backup also contains the undo log files for open transactions.

A restart of the system copy works even though no corresponding logs have been provided. In this case, the
restart undoes all transactions that were open at the time of the savepoint. The requisite information is available in
the form of the undo log files.

Before restarting the system copy, after restoring the data backup you can also import log backups.

As you can restore the instance to a transaction-consistent status with the savepoint data, version 7.4 and up no
longer feature the checkpoint familiar to users of earlier versions.

15

© SAP 2007 / MaxDB 7.6 Internals – Logging / Page 15

UKT

user 1
user 2

UKT

user 3
user 4

Multiple Log Queues

Data Cache

tab1

Undo Log Files

K1,Y

user 1
user 2

Log
Queue

K1,XUpd

K1,Y
Upd

Log
Queue

K2,C
Upd

LogUKT

logwriter

K2,BUpd

K2,C

As of version 7.6, MaxDB supports the use of multiple log queues. The database parameter
LOG_QUEUE_COUNT determines the number of log queues.

In the Standard, the value for LOG_QUEUE_COUNT is equivalent to the value for MAXCPU. Each UKT with user
tasks writes to its own log queue. This prevents collisions at the log queues.

The database still works with a logwriter, which imports the log pages from the log queues and writes them to the
log area.

16

© SAP 2007 / MaxDB 7.6 Internals – Logging / Page 16

Log Queue Management I

User1 User2 Log Queue Log Volume

Connect
Connect

UpdateT1.0Update

Log Queue Page 1

Log Queue Page 2

Log Queue Page 3

T1.0Update Update UpdateT2.0

In this example the log queue has a size of 3 pages. Users write the redo log entries in the log queue, but not
directly to the log volume.

Users 1 and 2 log on to the database. Only redo log entries are written in the log queue, so the connect does
not need to be written in the log.
In version 7.3, the connect was also written in the log. Thus it was not possible to log on to the database in
the Log Full status.
As of version 7.4, logon if status is Log Full or Database Full is possible.

User 1 executes an UPDATE statement in the database. An update changes data in the database, so a redo
log entry is made for this statement in the log.

User 2 then executes an UPDATE statement. The entry in the log queue gets the ID T2.0.

17

© SAP 2007 / MaxDB 7.6 Internals – Logging / Page 17

Log Queue Management II

User1 User2 Log Queue Log Volume

Insert
UpdateT1.0 UpdateT2.0 T1

Insert1

UpdateT1.0 UpdateT2.0 T1 0

UpdateT1.0 UpdateT2.0 T1

Insert1

UpdateT1.0 UpdateT2.0 T1 0Commit

T1.2 Com. Insert1 T1.2 Com. 1

UpdateT1.0 UpdateT2.0 T1

Insert1

UpdateT1.0 UpdateT2.0 T1

Insert1 1

0

T1.2 Com. T1.2 Com.

Delete Delete

T2.1 T2.1 21

The INSERT executed by user 1 fills the log queue page. The first part of the redo log entry is written in the
first page of the log queue page. The second part is written in the next log queue page. The user now
instructs the log writer to copy the log page to the log volume.

An I/O sequence is assigned for each write I/O in the log volume. This I/O sequence serves to synchronize
the parallel restore log or restart. When the first log page is written, it is assigned the I/O sequence 0.

User 1 ends the transaction with a commit. The transaction can only be confirmed as completed and ready
for application when the commit is in the log volume. The log writer writes the incompletely-filled log page to
the log volume and assigns a new I/O sequence.

User 2 fills the second log page with the redo log entry for a delete. The log writer writes the page to the log
volume. User 2 can continue to work and does not have to wait until the page is in the volume.

If multiple log queues are used, the logwriter will not overwrite blocks in the log. New entries alway will be put
to the next block. This leads to a certain higher log consumption.

18

© SAP 2007 / MaxDB 7.6 Internals – Logging / Page 18

Rol. 3

Log Queue Management III

User1 User2 Log Queue Log Volume

Select
UpdateT1.0 UpdateT2.0 T1

Insert1 T1.2 Com.

Delete

T2.1

UpdateT1.0 UpdateT2.0 T1

Insert1 T1.2 Com.

0

T2.0 2
Commit

Rollback T2.2 Rol. Delete T2.2

1

Update Update

Insert1 T1.2 Com.

Delete

T2.1

T2.2 Rol. T4.0

T4.1

Commit

Com. UpdateT1.0 UpdateT2.0 T1

Insert T1.21 Com.

0

T2.0 2

Update T4.1 Com. 5

Rol. 3 T4.0Delete T2.2 4

1

User 1 selects only data for the duration of the transaction. The transaction 3 makes no changes. No log
entries are written for the selects and the subsequent commit.

User 2 ends the transaction with a commit. When the transaction is rolled back, the undo log entries are read
from the undo log files in the data area. When all undo log entries have been rolled back, the redo log entry
for the rollback is written in the log queue. The user waits until this entry is in the log volume.

User 1 makes changes and completely fills the log queue. Further entries are now written in the first page of
the log queue. With the commit, this page is also copied to the log volume. As the log area is generally larger
than the log queue, writing can continue there.

19

© SAP 2007 / MaxDB 7.6 Internals – Logging / Page 19

Group Commit

User1 User2 Log Queue Log Volume

Update UpdateT1.0 UpdateT2.0 T1 UpdateT1.0 UpdateT2.0 T1 0Update

CommitCommit Com.1 T2.1 Com. Com.1 T2.1 Com.1 1

UKT
logwriter

Configuration parameter: Default value:
_DELAY_LOGWRITER 0 s

When the log writer is busy copying log pages from the log queue to the log volume, multiple commit and
rollback entries can accumulate in the current log page. These can then be copied to the log volume with an
I/O. This effect is known as a group commit.

Group commits can be aided by setting the parameters _DELAY_LOGWRITER and _DELAY_COMMIT. In
the benchmark environment, this led to minor improvements in throughput. In production operation, the
standard parameter settings should be used.

If the log writer is very busy, log pages that have not yet been copied to the log volume by the log writer can
gather in the queue. In this case, the log writer combines several pages into a larger block and copies them
to the log volume with an I/O.

20

© SAP 2007 / MaxDB 7.6 Internals – Logging / Page 20

Log Queue Overflow

User1 User2 Log Queue Log Volume

Update
T4.0

0

Update
T5.0

UKT
logwriter

DBM command:
info log

UpdateT1.0 UpdateT2.0 T1

Insert1 T1.2 Com.

Delete

T2.1

T2.2 Rol. T4.0

If the log writer cannot copy the log pages in the log queue fast enough, the log queue can fill up with pages
that have not yet been written. This effect is known as log queue overflow.

If this happens, all users who want to perform changes have to wait. Thus this situation can be very critical for
performance.

In most cases, log queue overflows occur due to slow write I/Os for the log volumes. It may be necessary to
enlarge the log queue.

The DBM command "info log" displays the number of log queue overflows since the last restart of the
instance.

21

© SAP 2007 / MaxDB 7.6 Internals – Logging / Page 21

None of the transactions has to wait.

Log Queue: Who has to wait?

Copying entries from the log queue to the log volume is initiated by:

Condition Transactions

Log Page full
After copy the user process can
immediately write to the next log
queue page.

Commit / Rollback
The ending transaction has to wait
until all log entries belonging to it have
been written to disk.

Savepoint

I/O Wait

No

Yes

No

The copying of the log queue to the log volume is triggered by:
A full log queue page
The user transaction can begin to write the subsequent log page as soon as the entry is in the log queue. It does not
have to wait until the log writer has written the entry in the log queue to the log volume.
A commit or rollback
The transaction has to wait until all corresponding entries have been written to the log volume.
A savepoint
User transactions can continue working. They do not have to wait until the savepoint entry has been written to the log
volume.

22

© SAP 2007 / MaxDB 7.6 Internals – Logging / Page 22

Contents of the Log Volume

Mirrored log area

0 Savepoint

1 DDL/DML Logs

2 DDL/DML Logs

Log area

0 Savepoint

1 DDL/DML Logs

2 DDL/DML Logs

In a new installation of the database, the log volumes are formatted. The DBM command db_activate without
option RECOVER launches the first restart of the database. A savepoint is also written. Thereafter, the database is
ready for use and all database components can connect to the database.

All changes by data definition and data manipulation commands are written in the log.

23

© SAP 2007 / MaxDB 7.6 Internals – Logging / Page 23

DDL Statements

Creating and dropping of database objects:

Log Volume

CREATE TABLE customer
(CNO fixed (4) KEY,
NAME char (20),
CITY char (20))

CREATE INDEX customer_1
ON customer
(NAME)

DROP TABLE customer

Create Table customer
(CNO fixed (4) key,
Name char (20),
City char (20))

Create Index customer_1
on customer (Name)

Drop table customer

Creation and deletion of database objects:

If a new object is created in the database, the CREATE statement is written to the log volume as a redo log entry.
Moreover, the kernel writes an undo log entry to the undo log file of the corresponding transaction.

If an index is created in the database, this statement, too, is written to the log. The creation of an index also
triggers a savepoint.

If an index is created in the database, this statement, too, is written to the log.

The statements are not written to the log in plain text, but rather in the form of stack code, which is generated by
the SQL manager.

24

© SAP 2007 / MaxDB 7.6 Internals – Logging / Page 24

DML Statements: Insert

Inserting new rows:

3000 Porter New York

3700 Miller Chicago

Log Volume

3000 Porter New York

3700 Miller Chicago

If new records are inserted into a table, the entire new record is written in the log.

25

© SAP 2007 / MaxDB 7.6 Internals – Logging / Page 25

DDL Statements: Qualified Update

Changing rows

3000 Porter New York

3000 Dallas

3000 Porter Dallas

Key

Update

Log Volume

If existing records are changed in the database, the key of the record to be changed is written in the log with the
changed field values. For variable-length fields, the length byte of the field is also stored.

26

© SAP 2007 / MaxDB 7.6 Internals – Logging / Page 26

Log Volume

DML Statements: Qualified Delete

Qualified deletion of rows

Delete from customer
where CNO = 3000

3000 Porter Dallas 3000

For qualified deletion of records, only the primary key of and the table ID of the record to be deleted are written in
the log. The other field values are not needed for a redo.

27

© SAP 2007 / MaxDB 7.6 Internals – Logging / Page 27

DML Statements: Unqualified Delete

Unqualified deletion of rows

Delete from customer

3000 Porter Dallas

3700 Miller Chicago

"Drop" Table customer

!

Catalog information
is kept

Log Volume

For unqualified deletion, the records to be deleted are not written in the log.

The deletion of all the records in a table is handled like a DROP Table, that is, a ‘DROP TABLE’ statement, which
triggers the deletion of the records, is written in the log. But the deletion of the data records does not occur
physically; rather, the B* tree of the table is recopied. That way the data can be restored quickly in case of a
rollback.

After the commit, the tree is deleted recursively. This action executes a server task in the background. The user
does not have to wait until the B* tree is deleted.

The catalog information of the table is retained in a deletion.

Even for unqualified deletion of the table data, the JDBC interface expects the number of deleted records in the
return. So MaxDB version 7.5 counts the number of records. If TRUNCATE is used, the database kernel does not
determine the number of records to be deleted.

As of Version 7.6, unqualified delete determines the number of records directly from the file directory and therefore
does not need to count.

28

© SAP 2007 / MaxDB 7.6 Internals – Logging / Page 28

Savepoint

0 time (min.)

Transaction 1

Log Queue

Data Pages

Converter Pages

Transaction 3

Transaction 2

_RESTART_TIME (10 min.)

Savepoint

Log

Data

Data

A savepoint speeds up database restarts. Savepoints are written asynchronously.

Savepoints are executed at regular time intervals, but they are also triggered by certain actions (for example
CREATE INDEX) in the database. In the standard, a savepoint is started every 10 minutes. You can configure the
time interval between savepoints with the _RESTART_TIME parameter. With this parameter, you can specify the
minimum number of seconds that must elapse after a savepoint before a new savepoint is started. The parameter
only affects time-controlled savepoints.

CAUTION: if you increase the value in _RESTART_TIME, you do reduce the number of savepoints and thus the
workload, but this can also slow down the restart after a crash.

Too-frequent writing of savepoints causes the contents of the caches to be written too often with too little data,
which hurts performance (I/O wait).

Time-controlled savepoints are not executed if no changes are made in the database.

A savepoint is also written when a "CREATE INDEX" statement is sent by a transaction.

The savepoint triggers the writing of the log queue, data cache and converter cache to the volumes.

29

© SAP 2007 / MaxDB 7.6 Internals – Logging / Page 29

When is a Savepoint started?

Time-controlled
(Parameter _RESTART_TIME)

Complete / Incremental Data Backup
(Save Data / Save Pages)

Restart / Shutdown

CREATE INDEX

FORCE SAVEPOINT

Database Full

Log Full

When is a savepoint requested?
Savepoints are time-controlled. With the standard setting, a savepoint is started every 10 minutes.
Data backups first start a savepoint and then back up all data covered by the savepoint. Changes to data during
the backup are not included in the backup.
When the database is shut down, the database kernel waits until a savepoint is carried out and all changed
pages in the cache have been written to the volumes.
Restart is ended with a savepoint.
A savepoint is started at the end of a CREATE INDEX.
You can start a savepoint manually with the SQL statement FORCE SAVEPOINT.
When the kernel sees that the data area or the log is filling up, it starts a savepoint. This minimizes the restart
time if the database is stopped with a full data or log area.

30

© SAP 2007 / MaxDB 7.6 Internals – Logging / Page 30

Automatic Recovery during Restart

T1

T2

time

C

T5 R

T3 R

Not relevant:
No recovery
for transaction
T1 / T5

T4 C

Roll forward (redo): T4 / T6
Rollback (undo): T2 / T3

T6 C

Savepoint CrashSavepoint Savepoint

Recovery at restart

The restart implicitly redoes or undoes the transactions; to do this, it goes back to the last savepoint.

All transactions that were not complete at the time of the last savepoint are subject to a redo or undo. Completed
transactions that were started after the last savepoint are also subject to a redo.

Example (see slide):
Transactions 1 and 5 are not relevant for the restart. T1 is completely in the data area. T5 is not in the data area
and was reset by a rollback.

Transactions 2, 3 and 4 were not complete at the time of the last savepoint.

T2 and T3 are rolled back from the savepoint. The changes of the transactions are read from the undo log files
UNDO .

T4 is redone starting at the savepoint. The changes are read from the log area REDO.
Transaction T6 has to be completely redone. The changes are found in the redo log entries in the log area
REDO.

31

© SAP 2007 / MaxDB 7.6 Internals – Logging / Page 31

Phases of the Savepoint

prepare

flush
marked pages

+ converter

new converter version

data

data cache

mark
altered pages

old converter version

data cache

savepoint start
• flush all modified

pages

savepoint end
• write log info page
• write restart record
• increase converter

version

prepare end
• release regions
• resume waiting tasks

prepare start
• assign sequence no.
• prevent tree splits
• block trans regions
• write log entry
• create open trans file

A savepoint is not a point in time, but covers a span of time. It is divided into three phases.

1. Phase:
In this phase, all data pages that have been marked as changed in the cache since the last savepoint and have
not yet been written to the data volumes are now written to the data volumes.
All data pages that are changed in this phase are marked.

2. Phase (Prepare):
The second phase is known as the prepare phase. At the beginning of the prepare phase,

the sequence values that are relevant for the savepoint are determined,
B* tree operations are blocked,
the transaction regions are reserved,
an entry is written in the log,
and a page chain (open trans file) with references to the open transactions is generated.

When the log entry for the savepoint has been written and the open trans file created,
all reserved regions are released and
all waiting tasks are woken up.

The duration of the prepare phase is generally in the millisecond range.

3. Phase:
In the third phase, all the data pages that changed in the first phase are written to the data volumes.
After that, the converter is written in parallel to the data volumes.
Then the log info page is written to the log and the restart record is written to the first position of the first data
volume. The savepoint is not finished until the restart record has been successfully written.
Following completion of the savepoint, the converter version (also savepoint version) is counted up by 1.
Changes to data pages in the third phase can now be written to the data volumes using the new converter
version.

32

© SAP 2007 / MaxDB 7.6 Internals – Logging / Page 32

upd ...upd roll7 svp

Prepare

... upd updupd upd upd upd updsvp upd com

Converter
Vers. 21

Converter
Vers. 22

Start Position within Savepoint

upd

savepoint start
• entry in restart

record

Undo Log File T1

Undo Log File T2

Commit

Rollback

Redo Log File T2

Data Cache

Redo Log File T1

Undo T2

The restart record contains the current log write position at the starting time of the corresponding savepoint.
The restart reads the log entries starting at this point.

The log reader copies the redo log entries for each transaction to a redo log file in the data area.

If the log reader reads a commit for a transaction, a redo task processes the redo log files and carries out the
corresponding changes in the data area. Changes may be carried out that were already written in the data
area by the savepoint.

If the log reader reads a rollback for a transaction or reads no end for a transaction, the redo task processes
the undo log file of the transaction. The undo log file contains all undo log entries of changes that were written
by the savepoint. The redo task redoes the changes made in online mode.

The log reader and redo tasks are listed as server tasks in the task overview.

The savepoint entry in the log is not needed for the redo operation. It is used for security checks.

33

© SAP 2007 / MaxDB 7.6 Internals – Logging / Page 33

Restore Log

DATA

Data Cache

Log

7 CR

BACKUP 4 21 53
1 2 3

1
2
3
4
5
6
7

6

6
C

1
2
3
R

Redo Log Files

6 R 7 C

Restore Log and restart create a redo log file in the data area for each transaction.

Only those redo log entries from the log backups that are no longer in the log volumes are copied.

A transaction is not redone until the redo log file has been completely generated.

Restore Log without until specification does not write to the log volume. Thus it is important to back up the
log area before the Restore.

With Restore Log with until specification, after all redo log entries have been processed, a savepoint is
written and the log is deleted from the until position onwards. This interrupts the log history. Therefore, in a
production system,

the log should be backed up before the Restore Log Until and
a data backup should be generated once the Restore is completed.

Savepoints are written during the Restore Log. With these savepoints, the generated log files are also written
to the log volumes. Following crashes, the last savepoint is the restart position. When you restart, start the
Restore with the last log backup that was read.

The DBM command db_restartinfo in the ADMIN state displays the log page on which the Restore Log starts.

34

© SAP 2007 / MaxDB 7.6 Internals – Logging / Page 34

Restore Log: Create Index

DATA

Redo area

1
2
3
4

CR INDEX
6
7

Commit REDO

Create Index is not started
dbmgui: Recovery -> Index
Recreate Index

Database parameter
AUTO_RECREATE_BAD_INDEXES

BACKUP CR INDEX 7
1 2 3

C
4

6

CREATE INDEX statements are not repeated in the case of a redo.

That can speed up RESTORE LOG considerably.

The indexes are recreated with RECREATE INDEX when the database is in the warm state.

When the parameter AUTO_RECREATE_BAD_INDEXES is set to YES, the corresponding indexes are
automatically generated at the end of the restart/redo. Users can log on to the database when the indexes
have been created.

35

© SAP 2007 / MaxDB 7.6 Internals – Logging / Page 35

Parallel Redo during Restart

Trans. ID 1 2 3 1 3 2 4 1 2 5 2

I/O Sequence No 574 575 577

Perform Upd A Upd B Upd C Upd D Comm Upd C Upd E Comm Upd F Upd G Rollb

5

Upd H

4

Upd B

5

Upd C

4

Upd A

5

Comm

4

Comm
Trans. ID
Perform

578 578 578 578 578I/O Sequence No

Log

575 / T1 572 / A 573 / D 575 / C

577 / T2 576 / F 575 / C 572 / B 577 / R

574 / T3 573 / C 574 / C

578 / T4 575 / E 578 / B 578 / A 578 / C

578 / T5 576 / G 578 / H 578 / C 578 / C

Redo List

572 572 573 573 575 575 576 576

578

Whenever possible, MaxDB redoes/undoes log entries in parallel. The lock mechanism cannot be used for
synchronization as is possible in the online operational state. Transactions may not "overtake" each other;
that is, they must be processed in the same order as in the online operational state.

The log I/O sequence of the transaction closures (commit/rollback) is used for synchronization when redoing
or undoing transactions.

The log reader creates an entry in the redo list when a redo log file is fully generated. This entry contains the
transaction ID and the I/O sequence of the transaction closure.

Multiple redo tasks then process the redo log files in parallel.

The redo task only redoes a log entry once all transaction closures with a smaller I/O sequence numbers
have been processed.

36

© SAP 2007 / MaxDB 7.6 Internals – Logging / Page 36

Parallel Redo during Restore Log

Trans. ID 1 2 3 1 3 2 4 1 2 5 2

I/O Sequence No 574 575 577

Perform Upd A Upd B Upd C Upd D Comm Upd C Upd E Comm Upd F Upd G Rollb

5

Upd H

4

Upd B

5

Upd C

4

Upd A

5

Comm

4

Comm
Trans. ID
Perform

578 578 578 578 578I/O Sequence No

Log

572 572 573 573 575 575 576 576

578

575 / T1 572 / A 573 / D 575 / C

574 / T3 573 / C 574 / C

578 / T4 575 / E 578 / B 578 / A 578 / C

578 / T5 576 / G 578 / H 578 / C 578 / C

Redo List

In this example, the rollback transaction does not have to be rolled back as it was not written to the data area
by a savepoint in the online operational state.

The redo log file is deleted immediately afterwards. The entry does not have to be added to the redo list.

Waiting transactions can continue to work. A further form of parallel processing now takes place.

The locking mechanism used here is different than ordinary locking. Locks are administered via the redo list.
The locking mechanism in the online operational state cannot, in this case, guarantee that the transaction will
not overtake each other.

There is no restart at the end of the Restore as the transactions are already redone during the process. The
database can be switched to the online operational state directly.

37

© SAP 2007 / MaxDB 7.6 Internals – Logging / Page 37

Data

DBIdent

Log Volume

LOG_0001

LOG_0002BACKUP

Restart Log Info

DBIdent: myserver:SID_20030812_162121

The log and data of an instance must always match. The data of one instance may not, for example, be
mixed with the log of another instance during log recovery.

To avoid the occurrence of incompatibility between log and data, the database kernel writes the DBIdent in
the restart record, which is located in the second block of the first data volume;
the log info page, which is located in the second block of the first log volume;
every data backup (Save Data / Save Pages); and
every log backup.

The DBIdent the names of the database server and the database instance as welll as a time stamp indicating
when the backup history began. This time stamp is set with until specification, for example at the first restart
and at the end of a Restore Log.

The names of the database server and the instance do not necessarily correspond to the current server and
instance names. Database instances can be renamed without the DBIdent being changed (see OSS note
604680). Instances can change database servers in the HA cluster.

38

© SAP 2007 / MaxDB 7.6 Internals – Logging / Page 38

Data

Homogeneous System Copy

LOG_0001

LOG_0002

BACKUP

myserver:SID_20030812_162121

Log volume

LOG_0010

dbmcli ...
db_admin
db_activate RECOVER data
recover_start log 001
recover_replace log 002
recover_cancel
recover_start log 002
...
recover_replace log 010
recover_ignore

myserver:SID_xxxxxxxx_xxxxxx

Homogeneous system copies are allowed if the processor types of the source and target servers are the
same. For more information, see OSS note 129352.

Data backups contain the undo log entries of all open transactions. They can import a data backup into
another instance per Restore and execute a restart. The restart ensures the consistency of the database by
undoing the open transactions.

Note that in this case the restart only works if the DBIdent in the log matches the DBIdent in the data area or
if the log was initialized with "db_activate RECOVER“. The "db_activate RECOVER“ statement does not fill
the DBIdent. The restart is what sets the DBIdent in the data and log areas.

Restore Data enters the original DBIdent in the data area. This makes it possible to import log entries and log
backups from the source system. The Restore Log process can be interrupted and resumed. In this case, the
dbmcli command recover_ignore executes the restart and sets the new DBIdent.

If log entries from the source instance are redone in the target instance, the database version of both
instances must be the same at build level.

As of version 7.5, a log backup that was created online also contains the last incompletely-filled log page,
that is, all redo log entries that were generated since the last log backup.

Caution: in older versions, this log page was only backed up once it was completely full. In older versions, if
you require a particular starting point, set the source instance to the ADMIN operational state to create the
last log backup for the system copy. This can be avoided by performing some "dummy" updates on a table.
The dummy updates would fill the last log page.

39

© SAP 2007 / MaxDB 7.6 Internals – Logging / Page 39

Data

Standby Instance

LOG_0001

LOG_0002

BACKUP

myserver:SID_20030812_162121

Log volume

LOG_0005

dbmcli ...
db_admin
db_activate RECOVER data
recover_start log 001
recover_replace log 002
recover_cancel
<copying log volumes>
db_online

myserver:SID_xxxxxxxx_xxxxxx

Log volume
Source system

myserver:SID_20030812_162121

LOG_0010

MaxDB also offers the possibility of operating so-called standby databases. A standby instance is supplied
with a data backup from an original instance. Subsequently the log backups from the original instance are
imported into the standby instance.

If the log volumes of the original instance are still available before starting the standby instance, you can copy
these log volumes to the log volumes of the standby instance. Then continue with recover_start. Once the
redo log entries can be read from the log volumes, the log reader no longer reads from the log backups. The
database is automatically set to the ONLINE operational state.

The DBIdent is retained. The log backup history is not interrupted.

Caution: The "db_activate RECOVER“ should not be used for a normal recovery. "db_activate RECOVER“ is
used in the creation of a new instance. For a normal recovery, "db_activate RECOVERY" would
unnecessarily prolong the recovery time. The current log in the log area is lost.

40

© SAP 2007 / MaxDB 7.6 Internals – Logging / Page 40

Cluster
l iv e C a c h el iv e C a c h el iv e C a c h el iv e C a c h e

Server A Server B

Archive
Log

Storage System

Hot Standby

LogData

Application

Data

DataRedo

Primary Standby

concurrent
restore

IP SWITCH

RECONNECT

Master

librtehss

As of version 7.5, MaxDB supports hot standby environments.

A production instance (master instance) works with its data area and writes changes to the data to the log
area.

When the standby instance is initialized, the data area of the standby instance is supplied with a snapshot
of the data of the current master instance. In standby mode, the standby instance reads from the
common log area and redoes any log entries. The standby instance only has read authorization for the
log area. The master instance informs the standby instance at short intervals how far the standby
instance can read from the log area.

If the master instance fails, the cluster agent executes a takeover by the standby instance. It sets the
standby instance to the online operational state. The library "librtehss“ enables the standby instance to
write in the log from now on. The takeover by the standby instance takes only a few seconds; only a
few redo log entries need to be redone. All necessary resources (for example caches) are already in
operation and do not need to be requested when the takeover occurs. The data pages that were
changed during the recovery are already in the cache.

Prerequisites for hot standby:
Use of a storage system that supports I/O consistent snapshots or Split Mirror. SAP OSS note 371247
described this requirement.
The storage system allows one instance to write in the log and other instances to read from it. "librtehss,
which is supplied by the manufacturer of the storage system, can switch the read/write mode.
The library "librtehss“ supplies the standby instance with the data from the master instance when the
former is initialized.
A cluster agent monitors the production database instance and starts a takeover if it fails.

MaxDB supports multiple instances.

Previously, Hot Standby was implemented by
IBM for IBM ESS, DS8000 and SVC. For further information see
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100442.
EMC implemented for Symmetrix with Timefinder Clone early 2006).

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100442.

41

© SAP 2007 / MaxDB 7.6 Internals – Logging / Page 41

Copyright 2007 SAP AG
All rights reserved

No part of this publication may be reproduced or transmitted in any form or for any purpose without the express permission of SAP AG. The information contained herein may be changed
without prior notice.
Some software products marketed by SAP AG and its distributors contain proprietary software components of other software vendors.
SAP, R/3, mySAP, mySAP.com, xApps, xApp, SAP NetWeaver, Duet, Business ByDesign, ByDesign, PartnerEdge and other SAP products and services mentioned herein as well as their
respective logos are trademarks or registered trademarks of SAP AG in Germany and in several other countries all over the world. All other product and service names mentioned and
associated logos displayed are the trademarks of their respective companies. Data contained in this document serves informational purposes only. National product specifications may vary.

The information in this document is proprietary to SAP. This document is a preliminary version and not subject to your license agreement or any other agreement with SAP. This document
contains only intended strategies, developments, and functionalities of the SAP® product and is not intended to be binding upon SAP to any particular course of business, product strategy,
and/or development. SAP assumes no responsibility for errors or omissions in this document. SAP does not warrant the accuracy or completeness of the information, text, graphics, links, or
other items contained within this material. This document is provided without a warranty of any kind, either express or implied, including but not limited to the implied warranties of
merchantability, fitness for a particular purpose, or non-infringement.
SAP shall have no liability for damages of any kind including without limitation direct, special, indirect, or consequential damages that may result from the use of these materials. This limitation
shall not apply in cases of intent or gross negligence.
The statutory liability for personal injury and defective products is not affected. SAP has no control over the information that you may access through the use of hot links contained in these
materials and does not endorse your use of third-party Web pages nor provide any warranty whatsoever relating to third-party Web pages

Weitergabe und Vervielfältigung dieser Publikation oder von Teilen daraus sind, zu welchem Zweck und in welcher Form auch immer, ohne die ausdrückliche schriftliche Genehmigung durch
SAP AG nicht gestattet. In dieser Publikation enthaltene Informationen können ohne vorherige Ankündigung geändert werden.
Einige von der SAP AG und deren Vertriebspartnern vertriebene Softwareprodukte können Softwarekomponenten umfassen, die Eigentum anderer Softwarehersteller sind.
SAP, R/3, mySAP, mySAP.com, xApps, xApp, SAP NetWeaver, Duet, Business ByDesign, ByDesign, PartnerEdge und andere in diesem Dokument erwähnte SAP-Produkte und Services
sowie die dazugehörigen Logos sind Marken oder eingetragene Marken der SAP AG in Deutschland und in mehreren anderen Ländern weltweit. Alle anderen in diesem Dokument erwähnten
Namen von Produkten und Services sowie die damit verbundenen Firmenlogos sind Marken der jeweiligen Unternehmen. Die Angaben im Text sind unverbindlich und dienen lediglich zu
Informationszwecken. Produkte können länderspezifische Unterschiede aufweisen.

Die in diesem Dokument enthaltenen Informationen sind Eigentum von SAP. Dieses Dokument ist eine Vorabversion und unterliegt nicht Ihrer Lizenzvereinbarung oder einer anderen
Vereinbarung mit SAP. Dieses Dokument enthält nur vorgesehene Strategien, Entwicklungen und Funktionen des SAP®-Produkts und ist für SAP nicht bindend, einen bestimmten
Geschäftsweg, eine Produktstrategie bzw. -entwicklung einzuschlagen. SAP übernimmt keine Verantwortung für Fehler oder Auslassungen in diesen Materialien. SAP garantiert nicht die
Richtigkeit oder Vollständigkeit der Informationen, Texte, Grafiken, Links oder anderer in diesen Materialien enthaltenen Elemente. Diese Publikation wird ohne jegliche Gewähr, weder
ausdrücklich noch stillschweigend, bereitgestellt. Dies gilt u. a., aber nicht ausschließlich, hinsichtlich der Gewährleistung der Marktgängigkeit und der Eignung für einen bestimmten Zweck
sowie für die Gewährleistung der Nichtverletzung geltenden Rechts.
SAP übernimmt keine Haftung für Schäden jeglicher Art, einschließlich und ohne Einschränkung für direkte, spezielle, indirekte oder Folgeschäden im Zusammenhang mit der Verwendung
dieser Unterlagen. Diese Einschränkung gilt nicht bei Vorsatz oder grober Fahrlässigkeit.
Die gesetzliche Haftung bei Personenschäden oder die Produkthaftung bleibt unberührt. Die Informationen, auf die Sie möglicherweise über die in diesem Material enthaltenen Hotlinks
zugreifen, unterliegen nicht dem Einfluss von SAP, und SAP unterstützt nicht die Nutzung von Internetseiten Dritter durch Sie und gibt keinerlei Gewährleistungen oder Zusagen über
Internetseiten Dritter ab.
Alle Rechte vorbehalten.

