
 1

 2
2

 3

 4

In this session, we use the table ZZTELE with approx. 115,000 records for the examples. The primary
key is defined on the columns NAME,VORNAME,STR

The uniqueness of the primary key ensures that we only have one entry with the same name, first
name and street.The records of the table are sorted in key sequence – name, vorname, str

You can get the table and the primary key definition with the following SQL statement:
Select * from domain.columns where tablename = ‘ZZTELE’

 5

To explain strategies which can be used for joins, the examples also refer to the table ZZSTADTTEIL
with approx. 20000 records and table ZZMASTER.

The primary key of table ZZSTADTTEIL is defined on column PLZ (zip code). For each zip code there
is one entry.

The table is sorted via zip code.

Table ZZMASTER has a multiple key defined on columns YEAR,NAME and VORNAME. The table is
sorted by the year of the Master graduation, Name and Vorname.

 6

 7

Indexes enable faster access to the rows of a table. The indexes of a table can be determined using the
system table INDEXCOLUMNS.

SELECT owner, tablename, indexname, type, columnname,

 sort, columnno, datatype, len, createdate

FROM domain.indexcolumns

WHERE owner = <owner>

AND schemaname = <schema>

AND tablename = <table_name>

ORDER BY owner, tablename, indexname, columnno

You can create an index (also known as secondary key) to speed up the search for database records in
a table. In technical terms, indexes are data structures (consisting of one or more inverting lists), which
store parts of the data of a table in a separate B* tree structure. This storage sorts the data according to
the inverting key fields that were used. Due to this type of storage, the table data can be accessed
faster using the indexed columns than without the relevant index.

For more information about indexes use SAP note 928037 FAQ SAP MaxDB Indexes

 8

A join is an SQL statement that links multiple tables with each other. A result table is created.

An inner join is the most common join operation. Inner join creates a result by combining column

values of two tables (A and B) based upon the join predicate.

The join predicate is defined in an ON clause and specifies a comparison between two values or lists of

values of both tables.

MaxDB handles four types of JOIN: INNER, OUTER (Full, LEFT and RIGHT), UNION

An outer join does not require each record in the joined tables to have a matching record. The result

contains each record—even if no other matching record exists. We distinguish between left and right

outer join.

A left outer join returns all the values from an inner join plus all values in the left table that do not

match to the right table added by NULL values for the left table.

A right outer join returns all the values from the right table and matched values from the left table

added by NULL values for the right table.

 9

When a join is optimized, first the optimal access strategy for each single table is calculated.

Then the optimizer decides which order of the tables will be processed in the join executation.

The calculation of the costs are based on the optimizer statistics.

Outdated optimizer statistics may have an extreme influence on the chosen access strategy and

therefore on the runtime of the SQL command.

E.g. After a dataload the statistics are outdated. But only if the relationship of the data (Distinct values)

was changed new optimizer statistics are necessary to find the best strategy.

 10

For a JOIN, the optimizer looks for the most suitable access path for each table.

Then the join optimizer decides in which order the tables will be processed and connected with each

other. For the join columns, the values are unknown before the execution. Therefore, the join optimizer

works with statistical values for columns.

 11

For the table itself, Update Statistics only determines data if the current size information is not already

in the file directory. This does not apply to tables created with databases of versions < 7.6 and for

which no size information could yet be determined in the file directory.

Update Statistics determines statistics data for all columns that are primary key or index columns. It

also determines the statistics data for all columns outside of the primary key and the index, if statistics

are available. Additonally it determines the statistics data of all entries in system table

SYSUPDSTATWANTED.

If the Optimizer discovers tables with outdated statistics data, they are inserted into in the table

SYSUPDSTATWANTED. The DBM command sql_updatestat_per_systemtable executes Update

Statistics for all tables listed in SYSUPDSTATWANTED.

The DBM command sql_updatestat executes Update Statistics for all tables in the database.

Update Statistics imports the data for a table from all data volumes in parallel for update statistics

computed (not estimate). This makes it very speedy.

As of version 7.6, the sampling procedure in the standard uses a new algorithm for calculating the

statistics data. You can determine the algorithm to be used with the parameter

UPDATESTAT_SAMPLE_ALGO. The new algorithm generates more accurate statistics with fewer

records read.

The programs "xpu" and "updcol" are no longer available as of version 7.6.

Additional information about Update Statistics: FAQ note 927882

 12

For tables that grow and shrink very quickly, such as spool tables, for example, it is a

good idea to set the sampling rate to 0. This prevents Update Statistics from being

requested and executed for these tables.

With the following command dbmcli starts an Update Statistics with sampling for all

tables of one schema:

sql_updatestat SAP<SID>.* estimate

 13

Requested Updates shows if an Update Statistics is requested for this table. It shows the content of

system table SYSUPDSTATWANTED.

Update Standard executes an Update Statistics table.

You can use Update (Column Statistics) to create column statistics for specified columns.

In the Optimizer Statistics view the column and table statistics are listed.

 14

The one table Optimizer only uses the statistics data for tables if the counters for size data are not in

the file directory.

The join optimizer uses the column statistics created with Update Statistics in the system table

OPTIMIZERSTATISTICS.

 15

For tables that were created with versions < 7.6, the counters for size data in the file

directory after upgrade to version 7.5 are not yet available. You can determine the

counters with a CHECK DATA in the ADMIN state or with CHECK TABLE WITH

SHARE LOCK. CHECK TABLE sets a share lock for the duration of the check.

After the upgrade from versions < 7.6 to versions >= 7.6, all table names are

transferred to the table SYSUPDATECOUNTERWANTED. With every restart and in

periodic intervals, the database attempts to determine the counters for all remaining

tables in SYSUPDATECOUNTERWANTED for the file directory. A share lock is set on

a table during processing. Determination of the counters is immediately terminated for

a table if the share lock causes a lock collision.

The values for TREENINDEXSIZE, TREELEAVESIZE and LOBSIZE are shown in

KB.

For tables, ENTRYCOUNT shows the number of records per table. For indexes,

ENTRYCOUNT shows the number of different values for the secondary key.

 16

An executation plan or access path shows how MaxDB accesses the requested data (index access,

table scan, key range, key equal, index equal, and so on). An EXPLAIN plan (execution plan) displays

the strategy the Optimizer selects to run a special SQL statement. These EXPLAINs are used to

analyze long running SQL statements. An EXPLAIN plan can only be displayed for SELECT

statements.

In the ABAP-based SAP application server, EXPLAIN is available in transactions ST05, DB50 and

DBACockpit (in the command monitor). The SQL editor of the Database Studio can send an EXPLAIN

via context menu (right mouse click) to the database. The output is shown in a separate window.

There are additional EXPLAIN statements which are useful for join analysis.

EXPLAIN JOIN and EXPLAIN SEQUENCE are used by the development to find optimizer problems.

Interested people can find additional information can be found in the SCN using the following links:

Explain JOIN -> http://wiki.sdn.sap.com/wiki/pages/viewpage.action?pageId=13230&bc=true

EXPLAIN SEQUENCE -> https://wiki.sdn.sap.com/wiki/display/MaxDB/MaxDB+Explain+SEQUENCE

 17

EXPLAIN shows:

 one block for each table from the SELECT-FROM list

 the order of the strategies reflects the order of execution

 COPIED / NOT COPIED --> Result set is generated/not generated

 "Estimated costs" provides an estimation about the number of read/write accesses

 Applied Query Rewrite rules

 18

Search conditions used by the optimizer to determine the optimal search strategy are:

 Equality conditions

 Range conditions

 IN conditions

The best strategy is chosen by the Optimizer. The basis of decision making is the cost for each

evaluated strategy.

The SQL Optimizer also converts conditions under certain circumstances. If a single value is specified

in an IN condition multiple times, the condition is converted into an equality condition.

 19

Joins are executed with the Nested Loop method. In doing so for the single join transitions no result

sets are built. The nested loop join uses one join input as the outer input table and one as the inner

input table. The outer loop consumes the outer input table row by row. The inner loop, executed for

each outer row, searches for matching rows in the inner input table.

Only the final result is fully created before the first row is delivered. -> this is a advantage for SQL

commands with restriction of ROWNO

As of version 7.7 there is no more possibility to choose between Sorted Merge or Nested Loop by a

parameter setting (JOIN_OPERATOR_IMPLEMENTATION). There are only marginal disadvantages

concerning CPU usage for Nested Loop with the current algorithms. Therewith the Nested Loop can

deliver the result faster and with the use of less resources.

The Optimizer starts with that table which related to the total execution plan results in the lowest total

costs. You should take care that convenient indexes exist.

In the example the Optimizer starts with a large table customer.

For each hit in customer (outer table) the inner table reservation is read. Each hit in reservation is

inserted immediately into the final result.

As soon as the number of requested rows (rowno = 6) has been reached the join process stops and

the result can be delivered to the application.

 20

Here is an example for nested loop join processed via index strategies.

 21

The analysis and optimization of complex joins is one of the most difficult tasks in the SQL statement

analysis.

For the access to the first table have a closer look to the local predicates. Can the primary key be used

to access the table or can the acess be optimized with an additional index.

For each join with MaxDB it is very important to have good join transition. The number of records read

can be reduced by creating convenient indexes for the join transition. During join performance analysis

a focus should always be if the best join transition is used.

 22

The join transition from table zztele to table zzstadtteil is specified via column PLZ. Table zzstadtteil

has a single key on column PLZ.

The key of table zzstadtteil is qualified in the join predicate. So a JOIN VIA KEY strategy can be used.

Because table zzstadtteil only has a single key column on plz the join transition can be done with the

strategy JOIN VIA KEY COLUMN.

 23

Remember: zztele key: Name, Vorname, Str

If the key of a joined table exists of more than one column and the complete key is qualified the join

strategy is the same as JOIN VIA KEY COLUMN. Only the name (JOIN VIA KEY COLUMN / JOIN VIA

MULTIPLE KEY COLUMNS) differs if the joined table has one or several key columns. This is because

of historical reasons.

If the complete multiple key is qualified in the join predicates the strategy is called JOIN VIA MULTIPLE

KEY COLUMNS.

 24

If the key of a joined table exists of more than one column and only the first column of the multiple key

is qualified the join transition is done via a KEY RANGE.

If only the first column of the primary key is qualified via a join predicate the join strategy is called JOIN

VIA KEY RANGE.

 25

If the key of a joined table exists of more than one column and only a part of the multiple key is qualified

the join transition is done via a key range.

If there is more than one key column part of the join predicates but not all primary key columns are

qualified then we are talking about the join strategy

JOIN VIA RANGE OF MULTIPLE KEY COLUMNS.

The strategy JOIN VIA RANGE OF MULTIPLE KEY COLUMNS is nearly the same as the strategy

JOIN VIA KEY RANGE. The difference is the number of key columnes of the joined table and has

historical reasons too.

 26

For the next examples about JOIN VIA INDEX accesses the tables ZZTELE, ZZCODE,ZZMASTER

and ZZSTADTTEIL are used.

The slide lists the indexes which exist on these tables.

 ZZTELE~3, ZZTELE~4 and CODE are single indexes (secondary keys).

ZZTELE~2 and ZZTELE~1 are multiple indexes (secondary keys).

ZZMASTER and ZZCODE do not have any indexes

 27

During join performance analysis an additional focus should be to check if the best join transition is

used and if we can optimize the join transition by creating a new index.

The following slides explain the join strategies via index access.

 28

In this SQL statement a local predicate is specified (stadtteil) on table zzstadtteil.

The join transition between ZZSTADTTEIL and ZZTELE is specified via column PLZ and column ORT.

Table ZZTELE has a single index on column PLZ. Column ORT is neither part of an index nor part of

the primary key.

The index ZZTELE~3 of table ZZTELE is qualified in the join predicate. So a JOIN VIA INDEX strategy

can be used. Because index zztele~3 is a single index on column PLZ the join transition can be done

with the strategy JOIN VIA INDEXED COLUMN.

 29

On table ZZTELE there exists a multiple index zztele~2 on columns STR,NR. The join transition

qualifies the complete index ZZTELE~2.

For the join transition a strategy called JOIN VIA MULTIPLE INDEXED COLUMNS can be used.

This is same strategy as JOIN VIA INDEX COLUMN. The only difference is that we have a multiple

index instead of a single index.

 30

If the index of a joined table exists of more than one column and only a part of the

multiple secondary key is qualified the join transition is done via an index range.

If there is more than one index column part of the join predicates but not all secondary

key columns are qualified then we are talking about the Join strategy

JOIN VIA RANGE OF MULTIPLE INDEXED COLUMNS.

 31

The hash join strategy is employed when a join transition to a small table is done and it is

probable that a large number of records needs to be read from the small table several times.

In this case it would be faster to import the small table once and generate a temporary hash table.

Searching for the keys in a hash table is faster than searching via the B* tree of the table. The

accesses on the hash table need not to be synchronized.

The strategy "TABLE HASHED" identifies the join via a hash table.

JoinHashMinimalRatio – default 1

The minimal ratio between size of tables joined so far to the size of the next table to be joined which

has to be equal or exceeded to use hashing for this next table

HashJoinSingleTableMemorySize (MAX_SINGLE_HASHTABLE_SIZE)

The maximum table size in KB for which hash joins will be executed. If

HashJoinSingleTableMemorySize = 0 then no hash tables will be created during join execution.

HashJoinTotalMemorySize (MAX_HASHTABLE_MEMORY)

As there can be multiple hash joins running at the same time, the amount of memory used for all

hashes might become excessive if it is unlimited. This parameter sets the upper limit for the memory

provided for all hash joins that are running in parallel. If during join execution a join transition qualifies

for a hash join but the overall memory used for all hash joins would be more than

HashJoinTotalMemorySize a regular join will be executed instead.

If HashJoinTotalMemorySize = 0 then no hash joins will be executed.

 32

 33

MaxDB supports the several hints, see SAP note 832544 FAQ SAP MaxDB Hints for detailed

information.

During join performance analysis the ORDERED Hint can be used to force a special order of table

processing.

 34

 35

 36

 37

