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This slide describes the paradigms of a database system that is reorganization free.  

As MaxDB does not need to be reorganized, the database can be operated with 

minimal administrative outlays. 

The absence of the need to reorganize also means that the database always works 

with optimal access structures. That means consistently good performance.  



To achieve an efficient I/O strategy while maintaining the no-reorganization principle of 

the database system, a framework of structural and functional prerequisites was 

developed for MaxDB.  These include, on the one hand, the no-reorganization principle 

itself, which is the result of separate memory management for the secondary storage 

media and the logical data pages and is primarily based on the following functions: 

 Sorting of data records when they are inserted,  

 Changing of data records in place, 

 Deleting of data records in place, 

On the other hand, there are the logical storage structures and terms. We will take a 

closer look at: 

 B* Trees, 

 Tables and indexes, 

 Primary and secondary keys 

 and the storage of LOBs (BLOBs – binary large objects, CLOBS – character large objects) 

 

 



The MaxDB storage concept ensures that data is quickly stored and found on the 

available disks. It is the key to automatic load balancing by MaxDB and thus 

guarantees the no-reorganization principle of the database system.  

 

 



In MaxDB, data is stored in B* tree structures.  

The smallest storage unit is the page. In MaxDB, the size of a page is 8 KB.  

A B* tree is created for each table and secondary index. 

A B* tree reaches from the highest level, the root level, to the lowest, the leaf level. 

The data is always on the leaf level. 

The primary index of the tables serves as a sorting criterion for the setup of the tree 

structure.   

It can be demonstrated that a B* tree procedure generally requires fewer accesses to 

find single records than other access methods. 



The entries in the data pages are comprised of two parts:  
 The fist part is comprised by the contents of the key fields of a table row. We shall refer to this as the separator. 

 The second part is comprised by the remaining data. 

 

On index pages, every separator is followed by a logical address that refers to a 
page on a lower index level or on the leaf level.  The number of entries that fits on an 
index page depends on the length of the separators. 

A node of the B* tree always comprises one page. Thus the number of entries per B* 
tree level depends on the length of the separators.  

In addition to the separator, leaf pages contain the contents of the other columns of 
the respective table row.  The number of entries that fits on an index page depends 
on the length of the separators. 

The amount of memory required for a table depends on the length of the key fields 
and the total length of a table row. 

The procedure described here is supplemented by special treatment of tables that 
contain LOB columns (Large Objects). Additional auxiliary trees are created for the 
purpose of accepting the contents of LOB columns, which can be many times longer 
than a data page.  



The B* tree procedure makes it possible to find data quickly.  

Here's an example of how a data record is found: looking in an address table with the 
primary index 'city', you want to find an entry for ‘Athens’. 

The search begins on the root level. The comparisons described in the following take 

place on a character by character basis. 

The database system checks if the value 'Athens'  is smaller than the second entry 

on the root page, 'Baf'. 

As the value is smaller, the corresponding logical address information from the first 

branch is evaluated. It points to a page on the next level (index level). 



The comparison then continues on the index level. Now the desired value, 'Athens', 

is smaller than the entry 'Au'  on the data page. 

So the ‘An’ branch is evaluated.  

The pointer points to the second page on the leaf level. Now we are on the leaf level 

(level 0). 



This page shows a root page as displayed by the MaxDB Tool x_diagnose.  

At the top you see the page header. As the page number and root number on this page 

are the same, this is a root page. The B* tree has three levels (levels 0 – 2). This page 

has 18 entries. It was changed 36 times. 

The separators are shown in their alphanumeric order. You see the respective start 

position, the page number on the next page to the separator, the length and the value of 

the separator.  



This page is an index page of level 1. The separators refer to pages of the leaf level.  

The header contains the known root page. It is checked with each access.  

The page has 103 entries, sorted. 



In this example the diagnosis tool displays only the primary key values.  

This page has 61 entries. The last record ends at position 7385.  



This graphic shows the first 100 bytes of the first record of page 558817.  

Each record begins with a header. This contains the length of the record, the length of 

the primary key value, the relative start position of the first variable-length value (e.g. 

VARCHAR) and the number of variable-length fields.  

On this page the record begins on position 81. The primary key begins within the record 

at position 10. 



If the name of the table is known we can find the root of the corresponding 

B*tree where the table content is stored and how many entries this table has.  

 

The table ZZTELE contains as information the name, surname of a person, 

their address with the street, house number, postal code, place and some 

additional information.  As we see in the table definition the first three columns 

NAME, VORNAME and STR build the primary key of this table.  

 

The content of the table shows one distinctive feature that one person often 

has different addresses so that the primary key differs only in the third column 

STR. And often the street name differs only in the last character for example 

„Dummy“ and „Dummy1“. It is important to keep this in mind for a later check of 

the separators in the B*tree of this table. 
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The root page has only two entries and leads us to the index pages 3036160 

and 4201499. This B*tree is rather deep and possesses three administrative 

levels till we reach the leaf pages (level 0) with the complete content of every 

table entry. On the root and index pages only the distinctive part of the primary 

key is stored. 

 

In this case we see the part of the B*tree starting with the second index page 

4201499 containing the references to the table data which are the same and 

bigger than the primary key NAME=„Legner“, VORNAME= „Ina“ and 

STR=„Dummy4“ 

 

Afterwards both index pages from the next level (level 2 on the page) are listed. 

The first index page 303616 contains the references to the 28 next index pages 

(level 1 on the page) and the second index page 4201499 contains the 

references to the next 30 index pages from the last index level before the leaf 

pages. 

 

We want to descend in the B*tree and will have look on the index page 

2991597  which is referenced as the 27th entry of the first index page 3036160. 
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The first three entries are copied from the first index page 3036160 of the first 

index level (level 2 on the page). Now we see three pages of the second index 

level (level 1 on the page). All three have the 3034399 root page and are 

connected with each other through the reference to its right neighbour. 

 

The page 2991597 (the 27th entry on the first index page of the first index 

level) is mentioned first as the right neighbour on the page 3080354 which was 

the 26th entry. This page references itself 67 leaf pages where the full table 

content is stored. 

 

We want to check the leaf page 3019059 which contains data entries where 

NAME >= “Kozi” and (NAME <=“Kraehmer” and VORNAME <= “Karin” and 

STR < “Dummy”) 
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At the beginning there are again three entries from the previous index page 

2991597 from the last index level (level 1 on the page) with the leaf page 

3019059 which we want to check. On this leaf page we see the root page and 

also both neighbour leaf pages from the left and from the right. It is the only 

page where the left neighbour is referenced because the last leaf page of the 

table always has NIL as the left neighbour. With it the B*tree is finished. 

 

The 37 entries on this page list the whole data entry in this table and not only 

the primary key information . 

18 



The data records are located unsorted in the start area of the target page. 

In the end area of the data page, there is a position list that refers to the individual 

records of the data page. This address list is arranged so that in the case of 

sequential access via the position list, the data entries can be read sorted. 

The database system searches the remaining entries and ultimately returns the 

requested table row. 

The position list and the data record entries start at opposite corners of the page and 

grow towards each other.   



If a record is to be inserted into the database or edited, MaxDB first searches for the 

data page that is changed by the action.  This is true for all the actions described in 

the following. Then, if necessary, the required space is made available by way of 

clearing operations.  

sort by insertion 

The records are: 

 inserted into the target page at the end of the  used data area, 

 sorted in the position list via an entry that, in order to minimize the number of moved bytes, contains only 

references to records. 

The records in the data part are only sorted if a clearing operation becomes 

necessary. If a data page is moved into another one, a sorted block is advantageous 

as this makes it possible to move whole groups of records rather than copying record 

by record. 

MaxDB data pages are organized such that the data area grows into the page from 

the beginning and the sorting list from the end. 

Let's assume that the record fits on the page. MaxDB simply puts it at the end of the 

area available on the page... 



... and then the position list is updated. The address of the new entry is written at the 

correct position in the position list. In our case, the correct position is position 4, 
which accordingly points to the seventh data record, 'Arbon'. 



update in place  

 Records are changed directly on the target page. 

 Case 1: length and key remain unchanged. 

If an UPDATE occurs and the separator is unchanged, the contents of the row are changed 

directly.  

 

 Case 2: the key changes. 

If changes have been made to a key field, the UPDATE is converted into a DELETE with 

subsequent INSERT. If necessary, clearing operations are carried out. 

 

 



 Case 3: The length is changed, the key remains unchanged. 

The contents of the row are changed directly, but the position of the subsequent entries is different. 

Thus the subsequent records need to be moved and the address information (of the subsequent 

records) adjusted in the position list. If necessary, clearing operations are carried out. 

 

If it is necessary to change the tree structure, first the required space is made available 

by way of B* tree clearing operations or by inserting a new block; then the UPDATE is 

carried out as described.  

 
 



delete in place 

 Records are changed directly on the target page. 

 The positions in the sorting list must be changed on the target page for all physically subsequent 

records 

 If a certain usage level is not reached, a B* tree clearing operation is carried out 



The records and the position list on the page are re-arranged so that the storage 

space used is contiguous. 

All changes to pages are executed in the main memory. That makes them very fast, 

but also CPU-intensive. 

If the fill level of a page falls below a certain mark, the tree structure is rearranged. 

An example of such a rearrangement will be shown later. 

MaxDB offers the possibility of applying the attribute DYNAMIC to tables. Only very 

simplified clearing operations are carried out on these tables. Such tables require 

more space, but they offer noticeably higher performance. This attribute is suited to 

tables that are highly dynamic, in particular through random accesses and large 

fluctuations in the size of the table.   



Now let's have a look at a simple change to the tree structure.  

Let's assume that, due to an INSERT, the new data record no longer fits on the 

corresponding page. 

A new page is then created on which the new record and half of the data records 

from the page that was too small for the INSERT are written. The respective records 

on the original page are then deleted. 



If necessary, the database system updates the pointers to the following pages. 

In addition, the address and separator information for the new page is entered in the 

B* index page above it.  

If this also does not fit on the B* index page, a new page has to be inserted. 

If the B* tree is no longer able to accept the new page, that is, even in the root page 

there is no more space available in which to insert a new branch, the entire B* tree 

has to be expanded by a new level. 



If the distribution of pages in the B* tree is unbalanced, that is, if there is an 

inordinate amount of pages on certain branches of the tree,... 



performance suffers because, on average, more accesses are needed to find data 

records.  

Such states are recognized by MaxDB when INSERTs, UPDATEs and DELETEs are 

processed and the tree is rearranged in the affected subareas. This procedure is 

known as balancing. This involves moving records back and forth between pages in 

order to achieve the highest possible utilization of the pages.  



Each time a B* tree is accessed, the respective page must be locked. As of version 7.5, 

these locks are no longer managed in separate lock lists but rather directly in the data 

cache. A lock is requested when the desired page in the data cache is accessed.  

Advantages as compared with the lock concept in versions 7.3 and 7.4:  a 

significant characteristic, and thus also the biggest disadvantage of the old concept, 

was that the locks for the pages B* tree were managed in a separate component, the 

so-called tree lock list. Heavy parallel access to the list could lead to collisions. 

Check Data / Check Table (VERIFY): In contrast to the SAP DB Versions 7.3 and 7.4, 

from version 7.5 this new concept makes it possible to execute change operations on 

the B* trees in parallel with Check Data or Check Table. 

 



MaxDB uses B* tree structures for the storage of all its tables. 

The term "table" includes: 

 Primary data, including the associated LOB data (LOB Large Object)   

 Secondary data as required for single and multiple secondary keys. 

A MaxDB table always has a primary key. This is either a user-defined key or a 

generated internal key. A user-defined key can be comprised of several columns 

(multiple key). 

The user can define additional secondary keys, which can also consist of one (single 

index) or several (multiple index) columns. 

There is exactly one B* tree for the primary data of a table and also precisely one B* 

tree for each defined index (also known as: secondary key). If a table is defined with 

LOB columns, one additional B* tree is created for the purpose of accepting the LOB 

values in these columns that do not exceed a certain length. If LOB values are longer 

than this defined value, a new B* tree is created for every single one of these values. 

 



This illustration shows a table with a LOB column. The number column represents the 

length of the LOB values. There is a B* tree for primary data, a B* tree for the shorter 

LOB values and n B* trees for n longer LOB values. 

Irrespective of their length, for LOB values the primary table always has a single entry 

of a fixed length which refers to the respective storage structure.   

 



This illustration shows an example of a table with a secondary key defined for multiple 

fields (2 fields). There is one B* tree for the primary data and a second B* tree for the 

indexed data. 

The B* index is not to be confused with the term index as it is commonly used for 

secondary key definitions! 

If the primary key values for a secondary key value cannot be contained on one data 

page, MaxDB stores the primary key values, sorted, in a separate B* tree. This means 

that the size of the secondary key tree can be significantly decreased.   

 

 



This illustration, taking the example of a table that contains LOBs and for which a 

secondary key has been defined, depicts how the assignment to B* tree structures 

works.  

 



A table, which is known to the user by a name, is internally administered with a ‘tableid’. 

The correlation between the names and tableids is registered in the database system 

dictionary (catalog). 

There is also the database file directory, which contains the assignments of the root 

nodes of the B* trees to the tableids of the database objects. The tableids are stored in 

the file directory along with a type flag which indicates what contents the underlying B* 

tree has.  

Thus a single tableid, in combination with the type flag, can be used to administer a 

table with all its associated B* tree entries in the file directory. 

The system table ROOTS contains information from the file directory and the database 

catalog. 

 

As of version 7.8 the system table ROOTS is no longer available. The view FILES (from 

the next slide) has to be used instead. 

 



As of Version 7.6, the FILES system view displays all information in the new file 

directory.  

The user can specify the route to the database catalog in his SQL query. The columns 

of the FILES view mean the following:  

FILEID Corresponds to ID for tables, indexes, etc. in the catalog 

SESSIONID Creator session for temporary trees 

ROOT Root page number of the B* tree 

TYPE TABLE | INDEX | FIXED OBJECT | VARIABLE OBJECT | KEYED 

OBJECT | KEYED OBJECT INDEX | SHORT COLUMN FILE | 

internal file type for temporary files 

PRIMARYFILEID FILEID of the B* tree of the table 

FILESTATE OK | DELETED | BAD | READ ONLY  

ENTRYCOUNT Number of entries in the tree. For indexes, entries in subtrees are 

not included.  

NULL: Value was not yet determined for migrated systems. 

TREEINDEXSIZE Size of index level in KB 

TREELEAVESIZE Size of leaf level in KB 

LOBSIZE Size of all BLOB values of the table 



An important role in the access performance of the database is playing by the 

MaxDB striping mechanism, which distributes the data pages evenly on the disks.   

Additional striping can be performed by the hardware. 

Striping guarantees even distribution of the I/O load on the available disks. 

Even load balancing of all the data areas in the database also prevents individual 

data areas from overflowing. A table can be larger than a single data area without the 

need for maintenance tasks to be carried out. 






