Expert Session — No-Reorganization Principle

IMS NW MaxDB / liveCache

August 2012

THE BEST-RUN BUSINESSES RUN SAP"

No-Reorganization Principle

IMS NW MaxDB / liveCache
Heike Gursch

Oksana Alekseious

August 14, 2012

THE BEST-RUN BUSINESSES RUN SAP™

1. Preconditions for No-Reorganization

2. B* Tree Concept

Structure of a B* Tree
Access to Data

Examples of Pages
Contents of a Data Page

B* Tree Balancing

What are B* Trees used for?

3. Concept of Filedirectory
m System View FILES
m System View ROOT

@ SAP AG 2012. All nghts reserved. / Page 3

Preconditions for No-Reorganization

SAPd

Space that is no longer used must be available for the database immediately.
The degree of usage of the data blocks must maintained at a consistently high level.

The data storage within the data blocks must be compact; no gaps are allowed.

This slide describes the paradigms of a database system that is reorganization free.

As MaxDB does not need to be reorganized, the database can be operated with
minimal administrative outlays.

The absence of the need to reorganize also means that the database always works
with optimal access structures. That means consistently good performance.

No-Reorganization Principle (1)

No-reorganization
update in place
sort by insertion
delete in place

Storage of data in B* trees
Tables and indexes
Data of type LOB (BLOBs, CLOBs, ex Long)

To achieve an efficient I/O strategy while maintaining the no-reorganization principle of
the database system, a framework of structural and functional prerequisites was
developed for MaxDB. These include, on the one hand, the no-reorganization principle
itself, which is the result of separate memory management for the secondary storage
media and the logical data pages and is primarily based on the following functions:

m Sorting of data records when they are inserted,

m Changing of data records in place,

m Deleting of data records in place,

On the other hand, there are the logical storage structures and terms. We will take a
closer look at:

m B* Trees,

Tables and indexes,

Primary and secondary keys

and the storage of LOBs (BLOBs — binary large objects, CLOBS — character large objects)

No-Reorganization Principle (2)

Storage concept
concept of B* trees
access to data
execution of an INSERT
execution of a DELETE
execution of an UPDATE
B* tree balancing
striping

The MaxDB storage concept ensures that data is quickly stored and found on the
available disks. It is the key to automatic load balancing by MaxDB and thus
guarantees the no-reorganization principle of the database system.

B* Tree Concept m

Level 2 (Root level)

]
Level 1 (Index level)

Level O (Leaf level)

[I N N O | | R |

© SAP AG 2012 All rights reserved. / Page 7

In MaxDB, data is stored in B* tree structures.
The smallest storage unit is the page. In MaxDB, the size of a page is 8 KB.
A B* tree is created for each table and secondary index.

A B* tree reaches from the highest level, the root level, to the lowest, the leaf level.
The data is always on the leaf level.

The primary index of the tables serves as a sorting criterion for the setup of the tree
structure.

It can be demonstrated that a B* tree procedure generally requires fewer accesses to
find single records than other access methods.

Structure of a B* Tree m
e

Level 2 (Root level)

Level O (Leaf level)

Aalen | ‘ Amiens H>[Aneby ‘ ‘ Athens {“L Auber II

© SAP AG 2012. All rights reserved. / Page 8

The entries in the data pages are comprised of two parts:

m The fist part is comprised by the contents of the key fields of a table row. We shall refer to this as the separator.
m The second part is comprised by the remaining data.

On index pages, every separator is followed by a logical address that refers to a
page on a lower index level or on the leaf level. The number of entries that fits on an
index page depends on the length of the separators.

A node of the B* tree always comprises one page. Thus the number of entries per B*
tree level depends on the length of the separators.

In addition to the separator, leaf pages contain the contents of the other columns of
the respective table row. The number of entries that fits on an index page depends
on the length of the separators.

The amount of memory required for a table depends on the length of the key fields
and the total length of a table row.

The procedure described here is supplemented by special treatment of tables that
contain LOB columns (Large Objects). Additional auxiliary trees are created for the
purpose of accepting the contents of LOB columns, which can be many times longer
than a data page.

Access to Data (1)

Level 2 (ROOt |eve|) SELECT F.'ROM address
WHERE city ='Athens'
Athens < Baf
Goto Address
Ox...

© SAP AG 2012 All rights reserved. / Page 9

The B* tree procedure makes it possible to find data quickly.

Here's an example of how a data record is found: looking in an address table with the
primary index 'city’, you want to find an entry for ‘Athens’.

The search begins on the root level. The comparisons described in the following take
place on a character by character basis.

The database system checks if the value 'Athens' is smaller than the second entry
on the root page, 'Baf'.

As the value is smaller, the corresponding logical address information from the first
branch is evaluated. It points to a page on the next level (index level).

Access to Data (2)

SELECT FROM address
Level 2 (Root level) —— R

Level 1 (Index i""i@vel)

.
[T [T | e [|

Athens < Au ——
Goto Address 0x... —— . Level 0 (Leaf Ievel)

© SAP AG 2012 All rights reserved. / Page 10

The comparison then continues on the index level. Now the desired value, 'Athens’,
is smaller than the entry 'Au’ on the data page.

So the ‘An’ branch is evaluated.

The pointer points to the second page on the leaf level. Now we are on the leaf level
(level 0).

Example Root Level

Start position of Page number on Truncated
separator next level primary key value

¢ e30adm on p3 : /fhome/e30:

USER: CONTROL

ROOT 52820 entries : 18 [block 528207]
: filevers: 36374 convvers: 5751
writecnt: 36

(pos 541585 #0 sep(0)

1%
2: (pos 00093) 528323 #0 sep(69): ’ Becker

Norbert dummy4 ”
3: (pos 00175) -> 484811 #0 sep(69): ~ CABY

Jean-Paul dummy3”
4: (pos 00257) -> 485113 #0 sep(69): ’ Dedopoulou

Katerina dummy3”
5: (pos 00339) -> 558877 #0 sep(69): 7 Fertig

Ruediger dummy2 ”
6: (pos 00421) -> 573136 #0 sep(69): ’ Graves

Deborah dummyd
7: (pos 00503) ->[542357 |#0 sep(69): ’ Hilgenhaus

Wolfgang dummy3”
8: (pos 00585) -> 484215 ep(64): 7 Kabadiyski

Mario d”

:nohold FZ7:up F8:down

We'll follow this page
number

© SAP AG 2012. Al rights reserved. / Page 11

This page shows a root page as displayed by the MaxDB Tool x_diagnose.

At the top you see the page header. As the page number and root number on this page
are the same, this is a root page. The B* tree has three levels (levels 0 — 2). This page
has 18 entries. It was changed 36 times.

The separators are shown in their alphanumeric order. You see the respective start

position, the page number on the next page to the separator, the length and the value of
the separator.

Example Index Level

Start position of Page number Truncated
separator on the next level primary key value

Y{ e30adm on p3: . /home/e30a

DIAGNOSE USER: CONTROL

m sorted entries : 103 [block
root : 528207 convvers: 4§
right : 484215 writecnt:

00&81) 52;530 #0 sep(69): 7 Hilgenhaus

8

Wolfgang dummy3”
2: (pos 00163) -> 580885 #0 sep(69): ’ Hillebrand

Hartmut dummy3”
3: (pos 00245) -> 516217 #0 sep(69): 7 Hilmen

Douglas dummy4 ”
4: (pos 00327) -> 559579 #0 sep(64): ’ Hinderer

Harald dic
5: (pos 00403) -> 483929 #0 sep(69): ’ Hinterberger

Franz dummyd ”
6: (pos 00485) -> 516699 #0 sep(69): 7 Hirai

Shinichiro dummy3”
7: (pos 00567) -> |558817 B0 sep(64): 7 Hirokawa

Ichiro d”
8: (pos 00643) -> 580889 #0 : 7 Hirschenberger

Stefan dummyd

4 ohold F7:up F8:down

We want to follow this page

number...

© SAP AG 2012. All rights reserved. / Page 12

This page is an index page of level 1. The separators refer to pages of the leaf level.
The header contains the known root page. It is checked with each access.
The page has 103 entries, sorted.

Start position of
the record

e30adm on p3:
DIAGNOSE

Example Leaf Level |

Primary key length

: fhome/e30:

Primary key value

USER: CONTROL

entries : 61

[block 558817]

root : 528207 convvers: 4529
right : 580889 writecnt: 4
| 2
1: (pos 00&81) key(68): ’ Hirokawa Ich
iro dummy
2: (pos 00191) key(69): 7 Hirokawa Ich
iro dummyl ”
3: (pos 00303) key(69): ’ Hirokawa Ich
iro dummy2 ”
4: (pos 00415) key(69): 7 Hirokawa Ich
iro dummy3”
5: (pos 00527) key(69): 7 Hirokawa Ich
iro dummy4
6: (pos 00639) key(69): ’ Hirose Fum
inori Wexstr”
7: (pos 00761) key(68): 7 Hirose Fum
inori dummy
8: (pos 00881) key(69): 7 Hirose Fum
[| inori dummy

Fl:hex/int F2:exit F3:end FS5:nohold F7:up F8:down

© SAP AG 2012. All rights reserved. / Page 13

In this example the diagnosis tool displays only the primary key values.

This page has 61 entries. The last record ends at position 7385.

Example Leaf Level Il

»{ e30adm on p34777: /home/e30adm =10} x|

DIAGNOSE E30 USER: CONTROL
1: (pos 00081) key(68): ’ Hirokawa Ich
iro dummy ”
00001 recLen : 110 recKeylLen : 68
00005 recVarcolOff: 7 recVarcolCnt: 4
record BUFFER FROM 1 TO 110 (FROM 81 TO 190)

1 2 3 4 5 6 7 8 910 11 12 13 14 15:16 17 18 19 20

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
dec:110 068 0 7 0 4 0 32 72105114111107 97119 97 32 32 32
hex: 6E 00 44 00 07 00 04 00 20 48 69 72 6F 6B 61 77 61 20 20 20
chrsin D H i r o k a w a

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

101 103 105 107 109 111 113 115 117 119
dec:h 32 32 32832132132 3232032032832 32 32 321 3232 32 3213232
hex: 20
chr:

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

121 123 125 127, 129 131 13 13! 137 139
dec: 32 32 32 32 32 32 32 32 32 32 73 99104105114111 32 32 32 32
hex: 20 20 20 20 20 20 20 20 20 20 49 63 68 69 72 6F 20 20 20 20
chr: ISe hi g ni g

61 62 63 64 65 66 67 68 69 70 71 72 7?3 74 75 76 77 78 79 80

141 143 145 147 149 151 153 155 157 159
dec: 32 32 32 32 32 32 32 32 32 32 32100117109109121 0194112 O
hex: 20 20 20 20 20 20 20 20 20 20 20 64 75 6D 6D 79 00 C2 70 00
chr: d u m m y P

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

161 163 165 167 169 174 173 175 177 179
dec: O O O 6 32 49 48 49 48 50 1 32 41 32 15 32 70105110 97
hex: 00 00 00 06 20 31 30 31 30 32 01 20 01 20 OF 20 46 69 6E 61
Bhr: £ 0 1 0 2 F i n a

Fl:hex/int F2:exit F3:end FS:nohold F7:up F8:down

© SAP AG 2012. Al rights reserved. / Page 14

This graphic shows the first 100 bytes of the first record of page 558817.

Each record begins with a header. This contains the length of the record, the length of
the primary key value, the relative start position of the first variable-length value (e.g.
VARCHAR) and the number of variable-length fields.

On this page the record begins on position 81. The primary key begins within the record
at position 10.

Example: Table ZZTELE

SAPd

select f.root, f.type, t.tablename, entrycount from files f, tables t where f fileid = t.tableid and
tablename="ZZTELE'

ROOT TYPE TABLENAME ENTRYCOUNT
3034399 TABLE ZZTELE 114199
Table Definition SAPWBS.ZZTELE
_Column Name Type Data Type Code Type Length Decimal Places Access Rights Default Posttion Key Position
NAME TKEY VARCHAR UNICODE 40 SEL+UPD+ 1 1
"VORNAME “KEY VARCHAR UNICODE 20 SEL+UPD+ 2 2
STR KEY VARCHAR UNICODE 40 SEL+UPD+ 3 3
NR OPT NUMBER 10 0 SEL+UPD+ 0 4
PLZ MAN VARCHAR UNICODE 5 SEL+UPD+ 5
ORT MAN VARCHAR UNICODE 25 SEL+UPD+ 6
CODE MAN VARCHAR UNICODE 31 SEL+UPD+ 7
ADDINFO MAN VARCHAR UNICODE 31 SEL+UPD+ 8
NAME VORNAME STR NR PLZ ORT CODE ADDINFO
Legner Ina Dummy 22 26884 kaufmannische Ausbildungsber
2 Legner Ina Dummyl 23 26885 kaufmannische Ausbildungsber
3 Legner Ina Dummy2 24 26886 kaufmaénnische Ausbildungsber
4 Legner Ina Dummy3 25 26887 kaufmannische Ausbildungsber
5 Legner Ina Dummy4 26 26888 kaufmannische Ausbildungsber

If the name of the table is known we can find the root of the corresponding
B*tree where the table content is stored and how many entries this table has.

The table ZZTELE contains as information the name, surname of a person,
their address with the street, house number, postal code, place and some
additional information. As we see in the table definition the first three columns
NAME, VORNAME and STR build the primary key of this table.

The content of the table shows one distinctive feature that one person often
has different addresses so that the primary key differs only in the third column
STR. And often the street name differs only in the last character for example
,LDummy“ and ,Dummy1*. It is important to keep this in mind for a later check of
the separators in the B*tree of this table.

15

Root and Index Level | of the Table ZZTELE

ROOT 3034399 level 3 perm entries: 2 [block 0]
bottom : 241 filevers: 46151 convvers: 49448
writecnt: 1
1: (pos 00081) -> 3036160#0 sep(0)
2: (pos 00093) -> 4201499 #0 sep(135): Legner Ina dummy4

NODE 3036160 level2 perm entries: 28 [block 1]
bottom : 3759 root : 3034399 convvers: 49448
right : 4201499 writecnt: 1

1: (pos 00081) -> 3093547 #0 sep(0)

2: (pos 00093) -> 4150358 #0 sep(135): Al-Rajhi Liza dummy3

3: (pos 00241) -> 3080024 #0 sep(135): Anez Marcela dummy3
4: (pos 00389) -> 3005515 #0 sep(135): Baeck Christian dummy2
5: (pos 00537) -> 3050137 #0 sep(135): Beck Bettina dummy2

26: (pos 03335) -> 3080354 #0 sep(135): Klingels Ulrich dummy4
27: (pos 03483) -> 2991597 #0 sep(125): Koyama Emiko d
28: (pos 03621) -> 3035591 #0 sep(125): Leblon Pierre d

NODE 4201499 level 2 perm entries: 30 [block 2]
bottom : 4303 root : 3034399 convvers: 49448
right : nil writecnt: 1

1: (pos 00081) -> 3064665 #0 sep(135): Legner Ina dummy4
2: (pos 00229) -> 3064701 #0 sep(134): Loehrlein Harald dummy
3: (pos 04155) -> 3051003 #0 sep(135): Luedtke Christine dummy2

EQt (pos 03565) -> 3095070 #0 sep(135): Wray Paul Philip dummy2
30: (pos 03713) -> 3020557 #0 sep(135): Zhao Xu Min dummy4

AG 2012. All ights reserved. [Page 16

The root page has only two entries and leads us to the index pages 3036160
and 4201499. This B*tree is rather deep and possesses three administrative
levels till we reach the leaf pages (level 0) with the complete content of every
table entry. On the root and index pages only the distinctive part of the primary
key is stored.

In this case we see the part of the B*tree starting with the second index page
4201499 containing the references to the table data which are the same and
bigger than the primary key NAME=,Legner‘, VORNAME= ,Ina“ and
STR=,Dummy4*“

Afterwards both index pages from the next level (level 2 on the page) are listed.
The first index page 303616 contains the references to the 28 next index pages
(level 1 on the page) and the second index page 4201499 contains the
references to the next 30 index pages from the last index level before the leaf
pages.

We want to descend in the B*tree and will have look on the index page
2991597 which is referenced as the 27 entry of the first index page 3036160.

16

Index Level 1l of the Table ZZTELE

26: (pos 03335) -> 3080354 #0 sep(135): Klingels Ulrich dummy4
27: (pos 03483) -> 2991597 #0 sep(125): Koyama Emiko d
28: (pos 03621) -> 3035591 #0 sep(125): Leblon Pierre d

NODE 3080354 level 1 perm sorted entries: 58 [block 28]

bottom : 7831 root :3034399 convvers: 49448

right : 2991597 writecnt: 2

NODE 2997597 level 1 perm sorted entries: 67 [block 29]
bottom : 7667 root :3034399 convvers: 49448

right : 3035591 writecnt: 2

1: (pos 00081) -> 3094341 #0 sep(125). Koyama Emiko d

2: (pos 00219) -> 3019059 #0 sep(9): Kozi

3: (pos 00241) -> 3050083 #0 sep(134): Kraehmer Karin Dummy
“66: (pos 07371) -> 3080384 #0 sep(135): LAUREAU Laurence dummy4
67: (pos 07519) -> 2991613 #0 sep(135): LE GRATIET Gwenola Dummy3

NODE 3035591 level 1 perm sorted entries: 62 [block 30]
bottom : 7695 root :3034399 convvers: 49448
right : 3064665 writecnt: 2

AP AG 2012. All ights reserved. / Page 17

The first three entries are copied from the first index page 3036160 of the first
index level (level 2 on the page). Now we see three pages of the second index
level (level 1 on the page). All three have the 3034399 root page and are
connected with each other through the reference to its right neighbour.

The page 2991597 (the 27th entry on the first index page of the first index
level) is mentioned first as the right neighbour on the page 3080354 which was
the 26th entry. This page references itself 67 leaf pages where the full table
content is stored.

We want to check the leaf page 3019059 which contains data entries where
NAME >= “Kozi” and (NAME <="Kraehmer” and VORNAME <= “Karin” and
STR < “Dummy”)

17

Leaf Level of the Table ZZTELE

1: (pos 00081) -> 3094341 #0 sep(125). Koyama Emiko d
2: (pos 00219) -> 3019059 #0 sep(9): Kozi
3: (pos 00241) -> 3050083 #0 sep(134): Kraeshmer Karin Dummy

LEAF 3019059 perm sorted entries : 37 [block 1536]
bottom : 7193 root 3034399 convvers: 49448
right : 3050083 writecnt: 4

00021 ndRoot :3034399/1F4D2E00
00025 ndRight :3050083/638A2E00
00029 ndLeft : 3094341/45372F00

: (pos 00081) key(133) Koziaczy Jacek Dummy 34 22306

: (pos 00245) key(135) Koziaczy Jacek Dummy1 35 22307

. (pos 00411) key(135) Koziaczy Jacek Dummy2 36 22308

: (pos 00577) key(135) Koziaczy Jacek Dummy3 37 22309

. (pos 00743) key(135) Koziaczy Jacek Dummy4 38 22310

: (pos 00909) key(135) Koziaczy Jacek Wexstr 39 22311

- (pos 01075) key(133) Kozlov Alexandr Dummy 40 22312 Facilities
Moscow

~NO bR WN =

AG 2012. All nghts reserved. / Page 18

At the beginning there are again three entries from the previous index page
2991597 from the last index level (level 1 on the page) with the leaf page
3019059 which we want to check. On this leaf page we see the root page and
also both neighbour leaf pages from the left and from the right. It is the only
page where the left neighbour is referenced because the last leaf page of the
table always has NIL as the left neighbour. With it the B*tree is finished.

The 37 entries on this page list the whole data entry in this table and not only
the primary key information .

18

Contents of a Data Page !

Data Entries
(unsorted)

@ SAP AG 2012. All rights reserved. / Page 18

The data records are located unsorted in the start area of the target page.

In the end area of the data page, there is a position list that refers to the individual
records of the data page. This address list is arranged so that in the case of
sequential access via the position list, the data entries can be read sorted.

The database system searches the remaining entries and ultimately returns the
requested table row.

The position list and the data record entries start at opposite corners of the page and
grow towards each other.

Sort by Insertion (1)

INSERT INTO address (name) wvalues ('Arbon')

SAP AG 2012 Al rights reserved. | Page 20

If a record is to be inserted into the database or edited, MaxDB first searches for the
data page that is changed by the action. This is true for all the actions described in
the following. Then, if necessary, the required space is made available by way of
clearing operations.

sort by insertion
The records are:
m inserted into the target page at the end of the used data area,

m sorted in the position list via an entry that, in order to minimize the number of moved bytes, contains only
references to records.

The records in the data part are only sorted if a clearing operation becomes
necessary. If a data page is moved into another one, a sorted block is advantageous
as this makes it possible to move whole groups of records rather than copying record
by record.

MaxDB data pages are organized such that the data area grows into the page from
the beginning and the sorting list from the end.

Let's assume that the record fits on the page. MaxDB simply puts it at the end of the
area available on the page...

Sort by Insertion (2) m

i 125 145{258 1341

© SAP AG 2012 All rights reserved. / Page 21

... and then the position list is updated. The address of the new entry is written at the
correct position in the position list. In our case, the correct position is position 4,
which accordingly points to the seventh data record, 'Arbon".

Update in Place (1)

UPDATE address
SET street = 'AKROPOLIS 1'

KEY city = 'Athens'

£ SAP AG 2012 All rights reserved. | Page 22

update in place
m Records are changed directly on the target page.

m Case 1: length and key remain unchanged.
If an UPDATE occurs and the separator is unchanged, the contents of the row are changed
directly.

m Case 2: the key changes.
If changes have been made to a key field, the UPDATE is converted into a DELETE with
subsequent INSERT. If necessary, clearing operations are carried out.

Update in Place (2)

— s]

195 143 184169

UPDATE address
SET street = 'Olymp 27'

KEY city = 'Athens'

2 SAP AG 2012. Al rights reserved. / Page 23

m Case 3: The length is changed, the key remains unchanged.
The contents of the row are changed directly, but the position of the subsequent entries is different.
Thus the subsequent records need to be moved and the address information (of the subsequent
records) adjusted in the position list. If necessary, clearing operations are carried out.

If it is necessary to change the tree structure, first the required space is made available
by way of B* tree clearing operations or by inserting a new block; then the UPDATE is
carried out as described.

Delete in Place (1)

DELETE FROM address WHERE name = 'Arbon'

B SAP AG 2012 All rights ressrved. | Page 24

delete in place
m Records are changed directly on the target page.

m The positions in the sorting list must be changed on the target page for all physically subsequent
records

m [f a certain usage level is not reached, a B* tree clearing operation is carried out

Delete in Place (2)

T Erene

DELETE FROM address WHERE name = 'Arbon'

SAP AG 2012 Al rights reserved. | Page 25

The records and the position list on the page are re-arranged so that the storage
space used is contiguous.

All changes to pages are executed in the main memory. That makes them very fast,
but also CPU-intensive.

If the fill level of a page falls below a certain mark, the tree structure is rearranged.
An example of such a rearrangement will be shown later.

MaxDB offers the possibility of applying the attribute DYNAMIC to tables. Only very
simplified clearing operations are carried out on these tables. Such tables require
more space, but they offer noticeably higher performance. This attribute is suited to
tables that are highly dynamic, in particular through random accesses and large
fluctuations in the size of the table.

Inserting a Data Page
(Page Split Operation) (1)
SN

I

—

INSERT INTO address (name) wvalues (‘Albas‘)

© SAP AG 2012 All rights reserved. / Page 26

Now let's have a look at a simple change to the tree structure.
Let's assume that, due to an INSERT, the new data record no longer fits on the
corresponding page.

A new page is then created on which the new record and half of the data records
from the page that was too small for the INSERT are written. The respective records

on the original page are then deleted.

Inserting a Data Page
(Page Split Operation) (2) SApg

|I

||

INSERT INTO address (name) wvalues (‘Albas‘)

o 8

© SAP AG 2012 All rights ressrved. / Pags 27

If necessary, the database system updates the pointers to the following pages.

In addition, the address and separator information for the new page is entered in the
B* index page above it.

If this also does not fit on the B* index page, a new page has to be inserted.

If the B* tree is no longer able to accept the new page, that is, even in the root page
there is no more space available in which to insert a new branch, the entire B* tree
has to be expanded by a new level.

B* Tree Balancing (1) m

]]

/|

ENEE--EEEN-EENE EEEN

© SAP AG 2012. All rights reserved. | Page 28

If the distribution of pages in the B* tree is unbalanced, that is, if there is an
inordinate amount of pages on certain branches of the tree,...

B* Tree Balancing (2)

© SAP AG 2012 Al rights reserved. | Page 29

performance suffers because, on average, more accesses are needed to find data
records.

Such states are recognized by MaxDB when INSERTs, UPDATEs and DELETES are
processed and the tree is rearranged in the affected subareas. This procedure is
known as balancing. This involves moving records back and forth between pages in
order to achieve the highest possible utilization of the pages.

B* Tree Locks (as of version 7.5)

B* tree locks are no SQL locks !
B* tree locks are held for a very short time

@ @ ©@ v

Read access .
Write access

Share
ock Root level

m Index level
Share
lock

m O Leaf level

Each time a B* tree is accessed, the respective page must be locked. As of version 7.5,
these locks are no longer managed in separate lock lists but rather directly in the data
cache. A lock is requested when the desired page in the data cache is accessed.

Advantages as compared with the lock concept in versions 7.3and 7.4: a
significant characteristic, and thus also the biggest disadvantage of the old concept,
was that the locks for the pages B* tree were managed in a separate component, the
so-called tree lock list. Heavy parallel access to the list could lead to collisions.

Check Data / Check Table (VERIFY): In contrast to the SAP DB Versions 7.3 and 7.4,
from version 7.5 this new concept makes it possible to execute change operations on
the B* trees in parallel with Check Data or Check Table.

B* Trees

Exactly one B* tree for:
every table
every table with columns of type LOB for all short LOB values (< ca. 8 KB)
every longer LOB value (> ca. 8 KB)
every index
subtrees of indexes

MaxDB uses B* tree structures for the storage of all its tables.

The term "table" includes:
m Primary data, including the associated LOB data (LOB Large Object)

m Secondary data as required for single and multiple secondary keys.

A MaxDB table always has a primary key. This is either a user-defined key or a
generated internal key. A user-defined key can be comprised of several columns
(multiple key).

The user can define additional secondary keys, which can also consist of one (single
index) or several (multiple index) columns.

There is exactly one B* tree for the primary data of a table and also precisely one B*
tree for each defined index (also known as: secondary key). If a table is defined with

LOB columns, one additional B* tree is created for the purpose of accepting the LOB
values in these columns that do not exceed a certain length. If LOB values are longer
than this defined value, a new B* tree is created for every single one of these values.

LOB Columns (Large Objects)

SAPd

. Table for Proprietary files
Primary table short LOB values for longer
Ki[10 [LOBid1 [OBid 1 |L-Data LOB values
K2 |4000 |[LOBid 2 LOBid 2 |L-Data

K3 |32000 |LOBid 3

K4 32000 [LOBd4 | LOB
N

— -Data
\\‘—'—‘*‘—-—-—_

This illustration shows a table with a LOB column. The number column represents the
length of the LOB values. There is a B* tree for primary data, a B* tree for the shorter
LOB values and n B* trees for n longer LOB values.

Irrespective of their length, for LOB values the primary table always has a single entry
of a fixed length which refers to the respective storage structure.

Indexes

@,
O
QgéQ)

Primary table Index table

K1[10[10 1010 | K1 K3| K5|...
K2[20[10 2010 | K2

K310/ 10 2040 | K4| K6
K4/20|40 4030 [K7
K5/10/10

K6[20[40

K7[{40| 30

@,
O
Qgéo .

B

O O.

This illustration shows an example of a table with a secondary key defined for multiple
fields (2 fields). There is one B* tree for the primary data and a second B* tree for the

indexed data.

The B* index is not to be confused with the term index as it is commonly used for

secondary key definitions!

If the primary key values for a secondary key value cannot be contained on one data
page, MaxDB stores the primary key values, sorted, in a separate B* tree. This means

that the size of the secondary key tree can be significantly decreased.

B* Trees

O Primary data O Index
O ale

K 'E O O- OO.-\O
\ géb

oJor

K: Key short LOBs O longer LOBs
I: Index gé b Q b

L: LOB column O O O O

This illustration, taking the example of a table that contains LOBs and for which a
secondary key has been defined, depicts how the assignment to B* tree structures

works.

System View ROOTS

File- File-Directory
Directory

TABLENA INDEX
W

TABLEID OWNER ME NAME TYPE ROOT FILE_ID
0000000000000CE1 SAPS13 CUEX CUEX~1 NAMED 119047 C2EBSDA3FFFFFFFF7FFFFFFFO000FFFFO7D1
INDEX 01000100000A07010000000000000CE10000

00000000
0000000000000CE1 SAPS13 CUEX ? TABLE 119036 39EASDA3FFFFFFFF7FFFFFFFO000FFFEFCDO
01000100000A0D000000000000000CEL0000

00000000
0000000000000CE1 SAPS13 CUEX ? SHORT 119030 33EASDA3FFFFFFFF7FFFFFFFO000FFFFF6D0
STRING 01000100000A12000000000000000CE10000

FILE 00000000
0000000000000290 ? ? ? LONG 4311 122A5CA3FFFFFFFF7FFEFFEFO000FFFFD710
COLUMN 00000100000C010000000000000002900000

00000000
00000000000004BD ? ? ? LONG 4398 EB2B5CA3FFFFFFFF7FFFFFFFO000FFFF2E11
COLUMN 00000100000C010000000000000004BD0000

00000000

Datenbank-Kataleg Datenbank-Katalog

Tables are internally administered by a 'tableid’

Mapping to B* trees via an entry in the file directory.

A table, which is known to the user by a name, is internally administered with a ‘tableid’.
The correlation between the names and tableids is registered in the database system
dictionary (catalog).

There is also the database file directory, which contains the assignments of the root
nodes of the B* trees to the tableids of the database objects. The tableids are stored in
the file directory along with a type flag which indicates what contents the underlying B*
tree has.

Thus a single tableid, in combination with the type flag, can be used to administer a
table with all its associated B* tree entries in the file directory.

The system table ROOTS contains information from the file directory and the database
catalog.

As of version 7.8 the system table ROOTS is no longer available. The view FILES (from
the next slide) has to be used instead.

System View FILES

¥m e MR RE
selectf.*, ttablename from files f, tables t
where {.primanyfileid = t.tableid or { fileid =t.tableid
and t.owner = useti

[[INs [Ln3.Cal18 L
FILEID | SESSIONID | ROOT | TYPE | PRIMARYFILEID | FILESTATE
000000000000048C ? 75476 TABLE 2 OK
000000000000048D ? 105246 INDEX 000000000000048C OK
000000000000048E ? 30812INDEX 000000000000048C OK
000000000000048F ? 75477 INDEX 000000000000048C OK
0000000000000490 ? 15922 INDEX 000000000000048C OK
0000000000000491 ? 60587 INDEX 000000000000048C OK
ENTRYCOUNT | TREEINDEXSIZE | TREELEAVESSIZE | LOBSIZE | TABLENAME

114199 144 14400 0 ZZTELE

2 104 9240 ? ZZTELE

513 8168 20504 ? ZZTELE

20001 48 10584 ? ZZTELE

5156 3144 14512 ? ZZTELE

10 48 9320 ? ZZTELE

2012. All rights reserved. /| Page 36

As of Version 7.6, the FILES system view displays all information in the new file
directory.

The user can specify the route to the database catalog in his SQL query. The columns
of the FILES view mean the following:

FILEID Corresponds to ID for tables, indexes, etc. in the catalog
SESSIONID Creator session for temporary trees

ROOT Root page number of the B* tree

TYPE TABLE | INDEX | FIXED OBJECT | VARIABLE OBJECT | KEYED

OBJECT | KEYED OBJECT INDEX | SHORT COLUMN FILE |
internal file type for temporary files

PRIMARYFILEID

FILEID of the B* tree of the table

FILESTATE

OK | DELETED | BAD | READ ONLY

ENTRYCOUNT

Number of entries in the tree. For indexes, entries in subtrees are
not included.
NULL: Value was not yet determined for migrated systems.

TREEINDEXSIZE

Size of index level in KB

TREELEAVESIZE

Size of leaf level in KB

LOBSIZE

Size of all BLOB values of the table

Disk Striping !

Data Volumes

© SAP AG 2012 All rights reserved. / Page 37

An important role in the access performance of the database is playing by the
MaxDB striping mechanism, which distributes the data pages evenly on the disks.
Additional striping can be performed by the hardware.

Striping guarantees even distribution of the 1/O load on the available disks.

Even load balancing of all the data areas in the database also prevents individual
data areas from overflowing. A table can be larger than a single data area without the
need for maintenance tasks to be carried out.

Thank You!
Bye, Bye - And Remember Next Sessions

LUGIEREEL LA Session 16: MaxDB SQL Query Optimization — Part |
2012 Session 17: MaxDB SQL Query Optimization — Part Il

@ SAP AG 2012. All nghts reserved. / Page 39

