
1

2

The target group of this session are customers with SAP Applications running on
SAP MaxDB, SAP partners and SAP employees who support SAP MaxDB
customers .

This session is based on MaxDB version 7.8 database called EXPERTDB which is
integrated into the internal development System S70.

This session consists of an theoretical part and a second practical part where
analysis of lock situation are shown.

3

4

A transaction is a sequence of one or more processing steps (SQL commands). It
refers to database objects such as tables, views, joins, and so on. The database
modifications must follow an “all or nothing” rule. If one part of the transaction fails,
the entire transaction fails.

When all SQL commands of a transaction are executed successfully the
transaction can be closed with COMMIT work.

If errors happen during the processing of a transaction the entire transaction will
be rolled back.

The next slides show the requirements which must be fulfilled (ACID condition =
atomic, consistent, isolation, durable).

5

The ACID model is one of the oldest and most important concepts of database
theory. It sets forward four goals: atomicity, consistency, isolation and durability.
No database that fails to meet any of these four goals can be considered reliable.
Indivisibility (atomic):
A transaction is atomic, which means that it is either executed completely (all its
operations) or not at all (all or nothing principle).
For example: There is no employee without a salary.
Maintaining consistency:
The defined integrity conditions remain fulfilled, for example, each employee has a
personnel number.
Isolation:
The operations within the transaction are isolated from the operations of other
transactions.

Durability:
Changes that completed transactions made to objects must be permanent
(persistent), for example, even if a system crashes.

6

If several transactions want to access the same objects concurrently, these
accesses must be synchronized with the help of lock management.
Since the database system allows concurrent transactions to access the same
database objects, locks are required to isolate individual transactions.
To lock an object means to lock this object from certain forms of use by other
transactions.
The more locks that are set, and the longer these stay in place, the less
concurrency is possible in database operation.
All locks are released by the end of the transaction at the latest.
(COMMIT, ROLLBACK, COMMIT WORK RELEASE, ROLLBACK WORK
RELEASE).

7

8

Locking management handles three types of objects:
Records (ROW) - Individual lines of a table are locked
Tables (TAB) - The entire table is locked.
Database catalog entries (SYS) - Database catalog entries are locked.

Locks can be requested implicitly by the database system or explicitly by you
(using the relevant SQL statements).

Requesting locks implicitly:
All modifying SQL statements (for example INSERT, UPDATE, DELETE) always
request an exclusive lock. You can select the lock operation mode by specifying
an isolation level when you open the database session. Depending on the
specified isolation level, locks are then implicitly requested by the database
system when the SQL statements are processed.
Requesting locks explicitly:
You can assign locks explicitly to a transaction using the LOCK statement, and
you can lock individual table lines by specifying a LOCK option in an SQL
statement. This procedure is possible at each isolation level. In addition, you can
use the LOCK option to temporarily change the isolation level of an SQL
statement.

9

What is a shared lock (Read Locks)?

Shared locks allow other transactions to perform read accesses but not to perform
write accesses to the locked object. Other transactions can set further shared
locks on this object, but no exclusive locks.
Shared locks can be set on individual table lines or on the entire table.

What is an exclusive lock (Write Locks)?
If an exclusive lock on a database object is assigned to a transaction, other
transactions cannot access this object.
Transactions that want to check whether exclusive locks exist or to set exclusive
or shared locks collide with the existing exclusive
lock of the other transaction. They cannot access the locked object.

Exclusive locks can be set on individual table lines or on the entire table.

10

The above table provides an overview of possible parallel read locks (share locks) and
write locks (exclusive locks).
A lock collision exists in the cases which are marked with "No"; i.e., after having
requested a lock within a transaction, the user must wait for the lock to be released until
one of the above situations or one of the situations that are marked with "Yes" in the
matrix occurs.
Additionally, the following applies:

If no lock has been assigned to a transaction for a data object, then a shared or
exclusive lock can be requested within any transaction, and the lock is immediately
assigned to the transaction.
If a shared lock has been assigned to a transaction T for a data object, and if no lock
has been assigned to any concurrent transaction for this data object, then the
transaction T can request an exclusive lock for this data object and the lock is
immediately assigned to this transaction.
If an exclusive lock has been assigned to a transaction for a data object, then a
shared lock can, but need not be requested for this transaction.

11

12

The isolation level plays an important role in the lock activities of the database
system. You use the isolation level to specify whether locks are requested or
released implicitly, and how.
Your choice of isolation level affects the degree of parallelism of concurrent
transactions and the consistency of the data: the lower the value of the
isolation level, the higher the degree of parallelism, and the lower the
degree of guaranteed consistency.
If transactions are competing for access to the same data, then different isolation
levels can cause different sorts of inconsistencies. You can find a compromise
between parallelism and consistency, while taking into account the requirements
of your database application.

13

A row is modified in the course of a transaction T1, and a transaction T2 reads this
row before T1 has been concluded with the COMMIT statement. T1 then executes
the ROLLBACK statements. In this case, T2 read a row that never actually existed.

14

Transaction T1 reads a row. Transaction T2 then modifies or deletes this row, and
completes the action with the commit statement. If T1 then reads the row again, it
either gets the modified row or a message indicating that the row no longer exists.

15

Transaction T1 executes an SQL statement S that reads a set of rows (M) fulfilling a
search condition. Transaction T2 then inserts or modifies data, and produces another
row that fulfills this search condition. If T1 then executes the statement S again, the
set of rows that is read differs from the set M.

16

Isolation level 0 does not offer any protection against access anomalies.
When rows are inserted, updated or deleted, implicit exclusive locks are assigned
to the transaction for the rows affected (T1).
These cannot be released until the end of the transaction.

Read access:
If you specify the isolation level 0 (uncommitted), then rows are read without
shared locks being requested implicitly.

If a row is then read twice within a transaction, this isolation level does not guarantee
that the row has the same state the second time as the first, since it could have been
changed by a competing transaction between the two reads. Furthermore, there is no
guarantee that the state of a row that was read has already been recorded in the
database using a COMMIT WORK statement.

It is not guaranteed that:
• a repeated read within the same transaction returns the same result
• rows once read ever will be committed (become persistent)

17

When rows are inserted, updated or deleted, implicit exclusive locks are assigned
to the transaction for the rows affected.
These cannot be released until the end of the transaction.

Write access:

Rows have to be exclusively locked before writing (Insert, Update, Delete)

LOCK ROW EXCL -> transaction got the exclusive lock on the row (T1)
LOCK REQ EXCL -> transaction is waiting for an exclusive lock (T2)

Locks are kept until the end of transaction, so that
– no concurrent modifications can take place
– this status can be made persistent (committed)

For SAP applications (ABAP stack), the isolation level is defined in the XUSER file.
The ABAP applications run at isolation level 0. To avoid the phenomena caused by
isolation level 0 ABAP programming (Open SQL) offers an own locking mechanism
so called enqueue lock objects.

18

When you retrieve data using an SQL statement, the database system ensures that,
at the time each row is read, no exclusive lock has been assigned to other
transactions for the given row. However, it is impossible to predict whether an SQL
statement causes a shared lock for a row of the specified table and for which row this
may occur. As of SAP MaxDB version 7.4 the share lock is removed after the record
has been read.
Locking of data entities and optimal multi-user operation are in direct conflict with one
another. It is not recognizable whether the waiting user is waiting for a lock or
whether the system is running poorly.

Read Access:

Read persistent (committed) rows. Check for collision happens before reading
In case of a collision a lock request is set. (REQ ROW SHARE)
The lock dispatcher implicitly changes the request into a lock, if the colliding lock is
released. The dispatcher uses a priority list to find the optimum user process.

19

If you specify the isolation level 1, then a shared lock is assigned to the
transaction for a read row R1 of a table.

Transaction T2 cannot get the exclusive lock because the Share lock on row R1
(4711/Meier) has not been released.
Transaction T2 requests a LOCK ROW EXCL

In NetWeaver (Java stack), data sources are used for the application logon. These
data sources can be configured. You can freely choose the isolation level. If the data
source does not specify an explicit isolation level, default isolation level 1 (read
committed) is used.

There exists more isolation level which will be explained in the slides. In this session
we won’t explain those isolation level because they are not used in SAP Application
environments by default.

20

Isolation level 15 ensures that the result set does not change as long as it is being
processed.
Reading backwards and positioning the pointer in the result set generates unique
results.

For all SQL statements, the behavior described for isolation level 1 or 10 also applies
for isolation level 15: The only difference is that with isolation level 15, shared locks
are requested for all the tables addressed by the SQL statement before processing
starts. If the SQL statement generates a result table, which is not physically stored,
then these locks are not released until the end of the transaction or when the result
table is closed. Otherwise, the locks are released immediately after the SQL
statement is processed.

When inserting, changing or deleting rows, the exclusive locks are assigned implicitly
to the transaction for the relevant rows that are not released until the end of the
transaction.

21

22

Isolation Level 2 safeguards against the "Non Repeatable Read" phenomenon. A record that
is read multiple times within a transaction always contains the same values.

If you specify the isolation level 2 or 20 (repeatable), then shared locks are requested
implicitly for all the tables addressed by an SQL statement data query before processing
starts.
If an SQL statement generates a result table, which is not physically saved, then these locks
are not released until the end of the transaction or when the result table is closed. Otherwise,
the locks are released immediately after the SQL statement is processed.
The table shared lock is not assigned to the transaction with SQL statements, where exactly
one row in a table is processed that is determined by key specifications or using CURRENT
OF <result_table_name>.

In addition, an implicit shared lock is assigned to the transaction for each row read while an
SQL statement is being processed. These locks can only be released using an UNLOCK
statement or by ending the transaction.

When inserting, changing or deleting rows, the exclusive locks are assigned implicitly to the
transaction for the relevant rows that are not released until the end of the transaction. No
locks are set for the whole table, however.

23

If you specify the isolation level 3 or 30 (serializable), then a table shared lock is
implicitly assigned to the transaction for every table addressed by an SQL statement.
These shared locks can only be released by ending the transaction. This table shared
lock is not assigned to the transaction with SQL statements, where exactly one row in
a table is processed that is determined by key specifications or using CURRENT OF
<result_table_name>.

Isolation level 3 safeguards against three types of access anomalies:
Dirty Read
Non Repeatable Read
Phantom

When inserting, changing or deleting rows, the exclusive locks are assigned implicitly
to the transaction for the relevant rows that are not released until the end of the
transaction.

24

25

26

For system monitoring transaction DBACockpit (or DB50 in older SAP releases) can
be used if an ABAP Stack or a Solution Manager is available.

MaxDB system tables can also be used for analysing lock situations but is less
comfortable than using the transaction described above.

The database console program x_cons can be directly used on OS level or in
transaction DBACockpit. This tool is used for more detailed analysis directly on the
database. Tasks which are holding or requesting locks are shown in status Vwait.

27

Two of three examples in this demo session can be reproduced using the SAP
MaxDB tutorial, which is available with each SAP MaxDB Software version. The
toutorial can be loaded with Database Studio -> Administration Tasks –> Load
Tutorial.

To reproduce the demo examples you have to change the Database Studio
preferences as follows:
Start Database Studio and choose:
Window -> Preferences -> Database Studio -> Editors -> SQL
Automcommit has to be switched off.
Isolation level must be set to Read Uncommitted (Dirty Read).

After these changes were applied each new SQL Editor inherits this environment.

28

To create a lock situation a minimum of 2 transactions are necessary.
For the first example in this expert session we are using table hotel.customer:

select * from hotel.customer

With the following update command the first name of customer with cno=
3000 will be changed from Jenny to Jennie.

update hotel.customer set firstname = 'Jennie’ where cno = 3000

This SQL statement is not commited. The system is running in isolation
level 0.
In the next slide we check which value for firstname is displayed by the
second transaction.

29

We open a second transaction (Editor 2) and check the content of table
hotel.customer.
Remember that Transaction 1 is still not committed or rolled back.

select * from hotel.customer

The select is working no share lock has to be set in isolation level 0.
The system is reading uncommitted therefore we already see the changed
value of firstname = ‚Jennie‘

Next step is to check the lock overview in transaction DBACOCKPIT (see
next slide)

30

In transaction DBACOCKPIT we can use Performance -> SQL Locks -> Overview
to check which and how many SQL locks are currently existing.

Task ID 65 holds an exclusive lock on one row of the table customer. There is no
other transaction which requests a lock on the same row (column Lock Request is
empty).

31

To create a lock wait situation in isolation level 0 a minimum of 2 transactions,
which want to change the same record are necessary.
The second transaction wants to update the same customer cno= 3000 with a
new address.

update hotel.customer set address = '125 West Place, #50' where cno
= 3000

The update statement is hanging in Database Studio …

32

Each transaction which wants to change records has to set locks on the records.
In this example we have 2 transactions which want to change records. We
have 2 entries in the lock overview.

Task ID 68 (which is the second SQL session which wants to change the
address) wants to have an exclusive lock (Lock request).
Task ID 65 (which is the first transaction which changes the first name) has
the exclusive lock on the record with cno=3000.

To find out if those transactions are both trying to change the same records
the DBACOCKPIT -> Performance -> SQL Locks -> Waits has to be used.

33

In transaction DBACOCKPIT -> Performance -> SQL Locks -> Waits the system
shows which transactions are holding locks and which transactions are requesting
those locks.

In the example of this session:
• Task ID 65 has a row_exclusive lock (Lock Type) on table customer
• Task ID 68 is requesting a row_exclusive lock (Lock request) on the same record

Task ID 68 is in status waiting (Waiting). The Lock Wait Time displays the
remaining wait time for this lock (in seconds). Initial lock wait time is the value of
parameter RequestTimeout. The database parameter RequestTimeout defines
how long a transaction is waiting at a max for the assignment of a lock. If this wait
time has expired before the lock is assigned, the transaction terminates with an
error ‚-51 Lock request timeout’.
TaskID 68 will get the lock as soon as Task ID 65 gave the lock free again (after
COMMIT or ROLLBACK). If Task ID 65 does not give the lock free again in the
remaining lock request wait time, Task ID 68 will get an error message ‚-51 Lock
request timeout‘.

34

When transaction 1 will be finished (COMMIT or ROLLBACK) the exclusive lock is
released.

35

After the exclusive lock is released transaction 2 (Task ID 68) got the exclusive
lock. This lock persists until transaction 2 finishs with ROLLBACK or COMMIT.

36

37

No locks exists anymore when both transactions in the database EXPERTDB
have been closed with COMMIT or ROLLBACK.

38

To monitor lock situations you can use transaction DB50 or DBACOCKPIT.
When you are working in an NON-SAP-Environment you can use the SAP MaxDB
system tables to monitor lock situations.

DOMAIN.LOCKS or DOMAIN.LOCK_HOLDER are showing all locks which currently
exist in the system.
The output of these system tables is shown in the transaction DBACOCKPIT –>
Performance -> SQL Locks –> Overview.

System table DOMAIN.LOCK_REQUESTOR lists all locks which are currently
requested.

System table DOMAIN.LOCK_WAITS lists all owners of current locks related to
current lock requests.
The output of this system table is shown in the transaction DBACOCKPIT –>
Performance -> SQL Locks –> Overview.

39

The system table LOCKSTATISTICS describes the current lock entries and entries
for lock requests.
Using the system table LOCKSTATISTICS you can determine the following database
information, among other things:

All locks that are held on a table
All locks that the current user is holding during his database session (if this is
the current user (DBA user) or database system administrator (SYSDBA
user), then all locks are displayed).

Users that belong to other user classes only see the locks held by that one user.

40

You will find a table description of all columns in the system table manual.
The following only lists particular columns:

MAXLOCKS contains the number of available locks in the lock list
USED ENTRIES contains the number of entries for locks and lock requests
AVG USED ENTRIES contains the average number of entries used for locks and
lock requests
MAX USED ENTRIES contains the maximum number of entries used for locks and
lock requests
LOCK ESCALATION VALUE contains the number of table rows from which the lock
rows are converted into table locks (lock escalation)
LOCK ESCALATIONS shows the number of escalations occurring so far.
LOCK COLLISIONS shows the number of collisions occurring so far for lock
requests.
DEADLOCKS shows the number of deadlocks that have been recognized and
resolved by the database system so far.
TRANSACTIONS HOLDING LOCKS contains the number of transactions with
assigned locks
TRANSACTIONS REQUESTING LOCKS contains the number of transactions
requesting locks

41

42

What is a lock escalation?
A lock escalation is the conversion of line locks into a table lock.

The MaxDB parameter MaxSQLLocks specifies the maximum size of the lock entry
list. In this list, record locks and table locks of all users as well as their lock requests
are managed. If the record locks of one transaction take up more than 20% of
the lock list for a table, the system carries out a lock escalation. In this process,
the record locks are converted to a table lock.

As of Version 7.6.03, an additional threshold (parameter RowLocksPerTransaction)
was introduced for lock escalations. If a transaction fills more than 50% of the
lock list with line locks, the lock escalation is carried out for the table whose
record is to be locked when this threshold value is exceeded. The default value
of parameter RowLocksPerTransaction is 50 %.

The system carries out lock escalations to prevent an overflow in the lock entry list.
Table locks may affect concurrent users who have lock requests.

43

You can increase the number of possible record locks for each user and table by
increasing the value of the parameter MaxSQLLocks.
You should increase the value of MaxSQLLocks if in transaction DBACockpit ->
Performance -> Activities Overview
Lock Activity shows:
• Available Entries -> Average set is similar to the value for MaxSQLLocks
• Available Entries -> Maximum set is identical with the value for MaxSQLLocks
• Escalations is higher than zero

Notice: The values are initialized with each shutdown of the database.

44

For each lock that has been defined using MaxSQLLocks the database takes up
200 to 300 bytes of main memory during the restart. The size of the entries
depends on the database versions and the operating system. If you want to
determine the exact memory consumption use the original value for
MaxSQLLocks to start the database. Use the operating system to determine the
memory consumption of the database process. Set MaxSQLLocks to the planned
new value and set the database to offline status and then to online status. Use the
operating system again to determine the memory consumption and calculate the
difference between the key figures determined.

In SAP environment the values of MaxSQLLocks are between 500.000 and
1.500.000.
In Business Warehouse systems values of 2.500.000 are not seldom.

45

46

A deadlock occurs if two or more users impede each other due to set locks and
can no longer work as a result.
Two or more transactions hold locks and request further locks that are already
held by the other transaction.
Deadlocks are detected by the database up to a certain depth. The system issues
an error message for the user who triggers the deadlock. The deadlock is
removed.
The database cannot recognize all deadlocks, for example, if shared locks are
involved. A deadlock that is not detected by the system is removed by timeouts.
The database parameter DeadlockDetectionLevel defines the maximum depth of
search for the deadlock detection with SQL locks.
If this database parameter is set to value 0, the deadlock detection is deactivated
(in other words, deadlocks are removed only by RequestTimeout). A value that is
higher than 0 defines the depth of search. Up to the specified depth of search,
deadlocks are detected and immediately removed. The initial value for the
deadlock detection is 4. A higher value results in considerable costs. Consider
using a higher value only if an application triggers serious deadlock problems that
cannot be solved in the application.

47

The default value of parameter DeadlockDetectionLevel is 4.

In the following example we have 2 transactions. Each transaction is holding a row
exclusive lock on a table and is requesting an exclusive lock which is held by the
other transaction.

First transaction is changing the price of single rooms for hotel 1413 in table room.
This change is not committed yet.

Transaction 1 is holding a row exclusive lock.

48

Second transaction is changing the arrival date for the room no 15 of hotel 1413 in
table reservation.
Transaction 2 is holding a row lock exclusive on table reservation. This change is
not committed yet.

At this time there is no wait or deadlock situation yet. We have 2 row exclusive on
two different tables.

49

Transaction 1 is starting the second SQL command. Table reservation should be
updated. The departure date of room no. 15 of hotel 1413 will be changed.
Because of transaction 2 is already holding the row lock exclusive on this row,
transaction 1 has to wait. A request row lock is set.

50

While transaction 1 is waiting for the row lock exclusive on table reservation which
is hold by transaction 2, transaction 2 wants to do an update on table room.
The number of free rooms has to be reduced.
Because transaction 1 is holding a row exclusive on the same record of table
room transaction 2 cannot get the row exclusive.

The deadlock detection mechanism will avoid this deadlock situation
• transaction 1 is holding the lock transaction 2 is waiting for
• transaction 2 is holding a lock transaction 1 is waiting for

with an implicit rollback of the second SQL command of transaction 2 (error
message ‘-60 work rolled back, DEADLOCK DETECTED’).

51

The database parameter DeadlockDetectionLevel defines the maximum depth
(here: level 4) of search for the deadlock detection with SQL locks.

To check what happens during a deadlock the DeadlockDetectionLevel is switched
off by setting the parameter to the value 0.
If the deadlock detection is switched off deadlocks will only implicitly be solved
with request timeout mechanism.

52

The same example is starting again but deadlock detection is switched off now.

We have again 2 transactions. Each transaction is holding a row exclusive lock on
a table and is requesting an exclusive lock which is held by the other transaction.

Transaction 1 is changing the price of single rooms for hotel 1413 in table room.
This change is not committed yet.

Transaction 1 is holding a row exclusive lock.

53

Transaction 2 is changing the arrival date for the room no 15 of hotel 1413 in table
reservation.
Transaction 2 is holding a row lock exclusive on table reservation. This change is
not committed yet.
There is no wait or deadlock situation yet. We have 2 row exclusive on two
different tables.

54

Transaction 1 is starting the second SQL command. Table reservation should be
updated. The departure date of room no. 15 of hotel 1413 will be changed.
Because of transaction 2 is already holding the row lock exclusive on this row,
transaction 1 has to wait. A request row lock is set.

55

While transaction 1 is waiting for the row lock exclusive on table reservation
which is hold by transaction 2, transaction 2 wants to do an update on table room.
The number of free rooms has to be reduced.
Transaction 1 is holding a row exclusive on the same record of table room
therefore transaction 2 cannot get the row exclusive.
Deadlock detection is switched off therefore both transactions are waiting
for each other.
When the deadlock detection is switched off this deadlock situation will be solved
when the request timeout is reached. One of those transactions is rolled back.

56

In transaction DBACockpit -> Performance -> SQL Locks -> Overview shows this
current deadlock situation.

There exist 2 lock entries of Task ID 68:
• On table room an lock row exclusive (write lock).
• On table reservation a request for a lock row exclusive (write lock).

There exist 2 locks of Task ID 65:
• On table reservation a lock row exclusive (write lock).
• On table room a request for a lock row exclusive (write lock).

Notice: In MaxDB version 7.8 it is not possible to analyse deadlock situations in
the past.

57

The deadlock situation can be better seen in transaction DBACockpit ->
Performance -> SQL Locks -> Waits

Task ID 65 has an exclusive lock on table reservation which is requested from
Task ID 68.
Task ID 68 has an exclusive lock on table room which is requested from Task ID
65.

58

In the Task Manager of transaction DBACockpit the Active Tasks show that there
are 2 tasks (65 & 86) in status Vwait which means that both transactions are
waiting for SQL locks.

In this session’s example we already know that these are those tasks which are
currently in a deadlock situation.

59

The deadlock situation can be solved implicitly by the request timeout, which is
configured with parameter RequestTimeout. In SAP environment the parameter
RequestTimeout is set to 3600 seconds.
When the wait time of request timeout is reached the transaction which is
requesting the lock will be rolled back with error message ‘-51 Lock request
timeout’.

For this session we don’t want to wait 1 hour until the deadlock will be solved
implicitly. The Task Manager can be used to kill one of the in the deadlock
involved tasks (=transactions).

60

To end a session in the Task Manager the task ID has to be marked and with End
Session the task will be killed.

With Terminate Command only the SQL command is canceled not the complete
database session.

61

After the task has been killed via Task Manager in transaction DBACockpit you’ll
get an error message in Database Studio for transaction 2.

62

In transaction DBACockpit -> Performance -> SQL Locks -> Overview task ID 68
which was holding a lock on table room and requesting lock on table reservation
disappeared.
Task ID 65 (Transaction 1) still holds the lock on table reservation and got the lock
on table room as well.

63

As soon as transaction T1 is finished here with an explicit rollback all locks are
released.

64

In transaction DBACockpit -> Performance -> SQL Locks -> Waits it can be seen
that no lock wait situation exists anymore.

65

66

Another important issue to know is how to analyze system blocking situations. To
solve a blocking situation you need to know which application is responsible for
the lock which blocks the system.

In transaction DBACockpit -> Performance -> SQL Locks –> Overview we have 3
transactions (Task ID: 63, 65, and 62).
All 3 transactions are started on the same application server. The application ID
(Appl. ID) is important to know for further analysis.
The application ID is the application process ID (application PID) of the work
process which is connected to the database task.

Workprocess: Database Task:

5424 63
5400 65
3076 62

Application 3076 has an exclusive lock on table room.
Application 5400 and 5424 are requesting an exclusive lock on table room.

67

All applications which are involved in this hanging situation are running on the
same application server. To get an overview transaction SM50 (Process Overview)
on the application server pwdf2763 is used to get more detailed information.
If applications on several servers are involved into a hanging situation transaction
SM66 (Global Work Process Overview) is used for detailed analysis.

Work process 0 has application PID 5400, which is in status Running. Currently in
action Update on table room.

Work process 1 has application PID 3076, which is in status Running as well.
Currently doing a sequential read on table city.

Work process 2 is not relevant for the blocking situation.

Work process 3 has application PID 5424, which is in status Running as well.
Currently doing an Update on table room.

68

To get the information which transaction is waiting for which lock transaction
DBACockpit -> Performance -> SQL Locks -> Waits is used.

Application PID 3067 (Work process 1) is holding the exclusive lock and both Task
ID 63 (WP 3) and Task ID 65 (WP 0) are waiting for this lock.

From the output of transaction SM50 task ID 62 (WP 1) is doing a sequential read
on table city and from database point of view even has a lock on table room.

This looks like in the ABAP program after an update, insert or delete there is no
commit work.
This may not happen in a regular SAP environment where the application
programmers are using the SAP Enqueue mechanism to lock and unlock table
accesses.
This can only happen when you are using native SQL in your ABAP coding, which
is not recommended.

69

Additionally transaction DBACockpit -> Performance -> Kernel Threads -> Task
Manager -> Active Tasks is used to check the status of each involved tasks from
database side of view.
Only those tasks are listed in Active Tasks which are active on the database level.
On database level Task ID 63 and 65 are in status Vwait, which means they are
waiting for SQL locks.
Task ID 61 is the Task Manager itself, so this is not relevant for the analysis of the
blocking situation.

The third task ID 62, which is involved into the blocking situation is missing in the
Active Tasks. Why?

It looks like this task is doing nothing in the database kernel.

70

An overview about the status of all user tasks can be seen with User Tasks.
Task ID 62 is in status Command wait. Therefore there is no entry in Active Tasks.

A Task which is in status Command wait is doing nothing on the database. The
task is waiting for the next application command which is sent to the database.

Conclusion this task must be terminated to get the blocking situation solved.

71

Notice: Even when you see in transaction SM50 that application 3076 (Task ID 62)
is busy with sequential read on a table, this does not mean that the application is
busy on the database.

Therefore always use the MaxDB DBACockpit (or DB50) -> Task Manager to
analyze and solve blocking situations.

72

With transaction DBACockpit -> Performance -> Kernel Threads -> Task Manager
Task ID 62 will be killed by using End Session.

73

After the Task ID 62 (application 3076) has been killed via MaxDB Task Manager
the blocking situation has been solved.

74

75

76

77

78

79

Thanks a lot for your interest in this session.
The recording of this session will be available on maxdb.sap.com/training soon.
There you‘ll find also the recordings of all previously held Expert Sessions about
SAP MaxDB.
Further Expert Sessions about SAP MaxDB are currently planned. It will be posted
on our SDN page http://www.sdn.sap.com/irj/sdn/maxdb if and when these
sessions will take place.

80

http://www.sdn.sap.com/irj/sdn/maxdb

81

