
1

2

3

4

With version 7.7 the I/O interface to the operating system has been reimplemented. As of version

7.7 different parameters than in version 7.6 are used. The improved I/O system has the following

essential advantages:

 No direct assignment of a I/O worker thread to a volume. This implies a better scalability of I/O.

 I/O worker threads can be started on request. This prevents the use of unnecessary resources.

 The synchronization of accesses to the I/O queues has been changed. The access is done

collision free. This additionally improves the scalability of I/O.

 Prioritization of special I/O requests. Dedicated jobs within the database (f.e. CHECK DATA) can

run with lower priority. Online operation is stressed less.

 Tasks can send I/O requests asynchroneously to the I/O system. They don‘t have to wait until

the I/O request has been fulfilled but can continue their work.

 Support of multiple database instances.

The former pager tasks have been replaced in 7.9 by the special savepoint tasks.

Usually it is not necessary to adapt these parameters. The database can start additional I/O worker
threads on request.
The parameter EnablePreAllocateIOWorker defines if I/O worker threads are already generated
during startup phase. As a default it is set to NO meaning that threads are only started when needed.
This is usually more effective. Be aware that if the configuration in near machine resource limits it may
happen that I/O worker thread resources are not available during runtime. F.e. this might prevent the
execution of a successful backup.

MinIOPoolWorkers defines the minimum number of I/O worker threads that were allocated during the
startup phase. If the parameter is set to a value smaller than the number of priorities, then at least as
many workers are started as priorities are defined.
With setting the parameter MaxIOPoolWorkers it is possible to restrict the number of I/O worker
threads.

(The value for MaxIOPoolWorkers is identical to MinIOPoolWorkers if EnablePreAllocateIOWorker
is set to YES.)

IOPoolIdleTimeout describes the maximum time in seconds an I/O pool worker is allowed to be idle
before it is released and the thread resources are returned to the operating system.
IOWorkerStackSize specifies the stack size for I/O worker threads in kilobytes which is as default the
platform-specific minimum stack size.

(The parameters shown above were introduced with the implementation of a multiple database concept.
This allows the use of several MaxDB databases within one instance. The parameters can be used to
restrict I/O resources per database within one instance. This concept did not come into effect so far.)

As soon as there are more than IOQueueFillingThreshold requests in the queue of an I/O thread the

system tries to put each additional I/O request to another I/O queue.

Values: Default: 1 (recommended)

Min: 0

Online change: YES

If there are not enough I/O worker threads available to handle all filled queues then the system

automatically starts an additional thread.

By defining the number of queues per volume and per priority you can influence the priorities of I/O for

certain requests.

VolumeIOQueuesForLowPriority:

Default: 1

Min: 1

Max: 10

Online Change: NO

VolumeIOQueuesForMediumPriority:

Default: 4

Min: 0

Max: 20

Online Änderung: NO

VolumeIOQueuesForHighPriority:

Default: 5

Min: 0

Max: 10

Online Änderung: NO

You can watch the states of current I/O requests in the system by the use of the console (x_cons) and

the system view IOJOBS.

The statement can be used to control the I/O behaviour of the affected task. If no TASK ID is given

the current task shall be prioritized.

The I/O priority can be reduced to LOW and raised to MEDIUM but not to HIGH. Server tasks inherit

the I/O priority from the client user task.

SET IO PRIORITY LOW

//

select count(str) from zztele

where 1 = 1

//

select io.ownername, io.iopriority, io.state from iojobs io, sessions s

where s.own= 'YES‘

and num(substr(io.ownername,2,31)) = s.taskid

http://pts:1080/webpts?wptsdetail=yes&ErrorType=1&ErrorID=1175203

http://pts:1080/webpts?wptsdetail=yes&ErrorType=1&ErrorID=1175203

The parameter EnableDataIOCluster allows to cluster adjacent pages and thus improves I/O

performance by processing larger units.

The kernel parameter EnableDataIOCluster is set to NO for liveCache instances.

Set this parameter to NO if you experience long running savepoints , especially when one CPU is

used to 100% and there is no I/O. When this parameter is set to NO, the savepoint will not attempt

to write data pages in cluster, which might lead to worse I/O performance when this data is read

back in.

Online Change: YES

"YES" enables I/O clustering

"NO" prevents I/O clustering

11

The first prefetch mechanisms were introduced with version 7.6. As some 7.7 versions were

developed at the same time, there are some 7.7 versions which do not support prefetching.

Further information can be found in the corresponding FAQ note:

1327874 - FAQ: SAP MaxDB Read Ahead/Prefetch

The following descriptions are related to 7.8 and 7.9. As the functionality is continueously enhanced

you have to check in older patches of these versions to which extent prefetching can be used.

14

As of version 7.8 MaxDB uses parallel I/O requests to speed up table scans and table range scans.
User tasks read index level 1 pages into the cache, determine the volume block positions of the pages
stored in the separators by reading the converter and send asynchronous I/O requests to the I/O
system. The user task doesn‘t wait for every single I/O before sending the next I/O request.

User tasks use asynchronous I/O requests if the size of the scan exceeds the number of pages specified
as value of the parameter ReadAheadTableThreshold. The query optimizer evaluates the range size
before the statement execution starts.

The database uses asynchronous I/O for scans only, if the number of current running I/O requests is
below the value of MaxDataAreaReadAheadRequests. The determination of the current running I/O
requests happens during the operation on the index level 1 page. This operation prevents the system
from I/O overload situations. I/O orders for short SQL commands should not be blocked by
asynchronous parallel I/O.

Asynchronous I/O read requests have the priority low.

Values:
ReadAheadTableThreshold:

Default: 100 Pages
Min: 0
Max: 2147483647
Online Change: Yes

MaxDataAreaReadAheadRequests:
Default: 2 x Number of Data Volumes
Min: 0
Max: 2147483647
Online Change: Yes

Monitoring: select * from monitor_pages where description like 'Read ahead%'

This parameter is used to control the number of parallel and asynchronously processed read ahead

(prefetch) requests.Typically read ahead is used during range access and complete scan. This

parameter will influence I/O behaviour and main memory consumption.

A huge number of requests may harm the I/O performance if the storage system is not efficient

enough. A huge number of requests will also consume data cache memory. The effects can be

monitored with the suitable system views.

If MaxDataAreaReadAheadRequests is zero the feature is disabled.

The performance of table scans using read ahead was improved by minimizing the number of page

faults caused by the user task. Instead of reacting to a read I/O by the user task, now 'read ahead' is

triggered when skipping to the next level-1 node.

Online Change: YES

The lower and upper limits are:

0 <= MaxDataAreaReadAheadRequests <= 2147483647

10 is set as default value but will be overruled by the formula: data volumes * 2

Attention: If the parameter is set to 0, the whole read ahead mechanism is deactivated!

16

This parameter MaxCreateIndexReadAheadRequests is used to control the number of parallel

and asynchronously processed read ahead (prefetch) requests produced by create index

operations. This parameter will influence I/O behaviour and main memory consumption. A huge

number of requests may harm the I/O performance if the storage system is not efficient enough. A

huge number of requests will also consume main memory.

The effects can be monitored by checking the DB-Analyzer logfiles or directly with the suitable

system views.

17

If no DataCache_ReadAsyncIOContext is available, create index switches to sequential mode.

This should be avoided.

18

The prefetch mechanism for LOBs is operated with the additional parameter

ReadAheadLobThreshold.

When reading larger LOB values, it is a good idea to continue reading asynchronously from the

volumes while sending a read package to the application. This is done by a server task if the length of

the LOB value to be read exceeds the value of the parameter ReadAheadLobThreshold.

Values:

Default: 25

Min: 2 * CommandBufferSize / 8196 Max: 262144

Online change: YES

This parameter defines whether read operations of LOBs are accelerated by reading them in

advance asynchronously. A prefetching mechanism is used for deletion of LOB leaf pages if the

parameter is set to YES.

In current versions 'Read Ahead' of LOBs does not only read the first four LOB pages per LOB (as it

was before) but uses 'read ahead' for the complete LOB.

The performance of DROP LOB was improved by

1. Using 'Read Ahead' depending on the parameter UseReadAheadLob

2. Avoiding file directory updates if LOBs are dropped in the course of a DROP TABLE statement.

The update of file directory counters has been accelerated for tables having long LOB columns

through read ahead mechanism and by just reading the root of LOBs.

Online Change: YES

NO: read ahead of LOBs never takes place

YES: the system decides when to use read ahead for LOBs

20

21

This parameter is used to control the number of parallel and asynchronous processed read ahead

(prefetch) requests produced by drop operations. This parameter will influence I/O behaviour and

main memory consumption. A huge number of requests may harm the I/O performance if the

storage system is not efficient enough. A huge number of requests will also consume main memory.

The effects can be monitored with the suitable system views.

If MaxDropDataReadAheadRequests is zero the feature is disabled

22

Online change: yes

Dropping tables via the garbage collector caused by TRUNC TABLE or unqualified delete are

executed without reading the leaf pages, if the following is true

1. DeleteLeafsWithoutRead = 'YES'

2. The table doesn't contain any LOB columns

3. The row definiton length doesn't exceed one page

23

Info from http://pts:1080/webpts?wptsdetail=yes&ErrorType=1&ErrorID=1253445

1. Read ahead of insert, update, delete via server tasks

2. Detect rollback of 'insert select' and enable page wise read ahead in this case. Read ahead is

done on tree level, i.e. several leaf pages are read asynchronously in advance from the right

side. The following Undo (delete operations) will find the relevant data in the cache, then.

3. Fixed bug : the size and state of undo files may have been lost, if the kernel crashed or was

stopped via 'db_stop'. Therefore at restart time even huge undo files have not been dropped via

a garbage collector. This caused too long restart runtimes. The size and state now can be

determined, even if normal kernel shutdown has not been reached.

4. New rows ("Rollback Read Ahead Counter" and "Rollback Read Ahead Key Counter") have been

added to SYSDBA.MONITOR.

5. Progress messages for long running undo operations using read ahead are written to the KnlMsg

file.

To which amount the read ahead mechanism can be used?

Read ahead on the undo file itself is implemented. When reading backwards, 4 pages are read

asychronously at the same time. More than 4 pages did not fit on the existing page structure.

Read ahead for undo operations is implemented, too. When an undo file is traversed the resulting

operations (Insert, Update, Delete) are not executed immediately but a server task is instructed to

look for the corresponding key which implies that the data is read to the cache. The undo operation

itself is started with delay because then the data is already expected in the cache. During this time

delay there is no waiting situation as the same processing is already started for the next undo entry.

The read ahead mechanism is not suited if there is no I/O. So it is only started if there is I/O at all.

24

http://pts:1080/webpts?wptsdetail=yes&ErrorType=1&ErrorID=1253445

24

As in case of restart the marking for backup within FBM is very slow on some platforms. A solution

has been designed which is similar to the restart behaviour. The affected blocks are collected first,

grouped by volume in the cache and then passed to FBM manager as a mass operation.

The size of the cache is defined by setting the parameter 'RestartVolumeGroupingMemorySize’. If

it is set to 0, the old and not optimized processing is done.

“This parameter potentially improves restart performance, but only in those (rare) cases when the

system is CPU bound during restart (we would normally expect it to be IO bound).

Increasing this parameter will allocate more memory in one chunk, which we have seen to be

beneficial on Solaris OS.”

Explain:

This value defines the amount of memory (in KB) used for grouping of used blocks by volume in the

course of a system restart. Using this kind of grouping may speed up the restart in case of huge

databases.

26

27

28

The collection of exact table information in TABLESTORAGEDETAILS is disadvantageous as the

table has to be locked.

Thus, it makes sense to combine the collection with Check Data.

30

Server tasks are responsible for importing data to be checked and the execution of the check.

A server task takes on the job of the coordinator and starts additional server tasks for the delivered

files (from the file directory that have to be checked). These server tasks import the data into the

cache where they execute the check.

One server tasks deals with the import and check of the data for a file (f.e. table, index, catalog

object).

By setting the parameter you can enhance the number of server tasks used for CHECK DATA and

thus the amount of read ahead operations.

A configuration with CheckDataParallelServertasks > 0 is not suitable for every system. It should

only be set if a powerful I/O system is used.

The database parameter CheckDataParallelServertasks belongs to the group of support database

parameters and is changeable in online mode.

Detailed information can be found in note

1837280 - SAP MaxDB: CHECK DATA runtime optimization

There is no guarantee that as many server tasks as given will actually be used as there may be

other database jobs competing for the server tasks available.

31

The implicit calculation of the number of pages used for read ahead depends on the configuration.

Generally the calculation should make sure that a similar I/O rate is achieved as if all server tasks

were still active. Be aware this calculated bandwidth is shared with all still active server tasks.

Default configuration:

The number of pages is determined by the number of configured server tasks. If parameter

CheckDataParallelServerTasks is set to 0, the maximum number of pages read in advance by

read ahead) corresponds to the number of volumes.

Enhanced configuration:

Increase the bandwidth for read ahead by setting the parameter.

Example:

- CheckDataParallelServerTasks is set to 100

- 10 server tasks are still running

 each server task can do a read ahead of 10 pages

After completion of the work of one or more server tasks the bandwidth is redistributed.

Monitoring:

- use operating system monitoring to check the load of the I/O system

- if not all capacity is used this may indicate that the parameter can be set to a higher value

- consider other parallel running actions causing I/O

32

Special improvements for Check Data have been explained before. Now we take a more general
look to server tasks which are also used for data backup and create index.

The configuration of server tasks has become more flexible.

Motivation:

In very big systems (a lot of CPUs, fast I/O) the UKTs with special tasks may become CPU-bound.

• During backup the server tasks could not generate I/O requests as fast as the I/O system has
delivered.

• The same might happen during savepoints.
• For garbage collectors the distribution to several threads might be advantageous.
• During Check Data or index creation the thread with server tasks was CPU-bound and thus too

slow (f.e. because too many server tasks were in one thread or the disk‘s performance is very
good.

If DedicatedServerTaskUKTs is set to YES then the server tasks run in special thread(s). This is
the default behaviour.

MaxServerTasksUKTs defines the number of threads to which the server tasks are distributed.

If DedicatedServerTaskUKTs is set to NO the server tasks are configured as running together with
user tasks in UKTs. As default MaxServerTasksUKTs is equal to UseableCPUs, then.

Detailed information can be found in note 1672994.
1672994 - SAP MaxDB: configuration of server tasks

Consider DB-Analyzer files DBAN_SV and DBAN_UKT_CPU_UTILIZATION to check the
behaviour.

The mechanism can be used in 7.8 and 7.9 versions.

(A problem with the parameter migration from 7.8 to 7.9 has been solved with PTS 1251378.)

33

New implementation of load balancing for server tasks (not released for customer systems yet.)

Different balancing groups have been introduced to make sure that the task types are not mixed up.

The new parameter EnableServerTaskBalancing allows to activate/deactivate the feature.

Additionally the parameter UseableServerTaskUKTs came to existence and allows (analogous to

UseableCPUs) to restrict the number of threads with server tasks.

34

The column „Task Cluster“ now contains information about „depopulation“.

If you see “(Depop. xxxxx)” the parameter UseableCPUs is smaller than MaxCPUs and/or the

value of UseableServerTaskUKTs is smaller than MaxServerTasksUKTs.

UseableCPUs influences user tasks and UseableServerTaskUKTs is valid for server tasks.

In the marked UKTs(Task Scheduler) the tasks are balanced to other UKTs.

35

The command „show moveinfo“ now additionally shows the „TASK type“ of the balanced tasks.

The table „User Kernel Threads“ also has the additional column showing which task types have

been balanced into or out of this UKT. Types in parentheses mean that tasks of this type are

removed from this UKT (depopulated).

36

37

DBAN_IO_PREFETCH

Check columns „Requests“ and „Ignored Requests“

If the percentage of read ahead requests ignored is >= 5% of all read ahead requests, this indicates

that you could achieve a higher throughput for CHECK DATA by increasing the database parameter

MaxDataAreaReadAheadRequests.

DBAN_SV

Check columns “ActiveServerTasks”, “IOWaitServerTasks”, “SV_PRThread”,

“SV_PhysPRThreadPg”, “AvgAbsRTime_SV”, “AvgrelRTime_SV”, “RunnableSVTasks”

If “AvgrelRTime_SV “differs from “AvgAbsRTime_SV” in such a way that the value of the absolute

time (AvgAbsRTime_SV) is a lot higher than the value of the relative time (AvgrelRTime_SV), this

indicates a CPU bottleneck in the UKT in which the server tasks run. This CPU bottleneck (CPU

bound) can be resolved by distributing the server tasks over several different UKTs.

DBAN_UKT_CPU_UTILIZATION

To confirm the CPU bottleneck if all server tasks are configured in one UKT, you can additionally

use the file UKT_CPU_UTILIZATION.prt in the Database Analyzer expert analysis. This file

provides an overview of the CPU load of all database threads. The server tasks are displayed in the

column "Taskcluster" with the abbreviation SV.

38

39

40

You can watch the state of the server task reserved for asynchronous I/O with

x_cons <DB> sh tas

Example output:

T60 4 0xD1C "IOCompl" IOComPort Wait 255 0 150196(s)

41

42

43

44

System view IOJOBS with the following columns:

- OWNERNAME – name of the owner

- JOBID CHARBYTE(8) - unique ID of the job, as the jobs may be displayed several times

- ASYNCHRONOUS CHAR(3) - YES/NO value indicating, whether the job is asynchronous

- OPERATION CHAR(16) - I/O operation name

- IOPRIORITY CHAR(6) - priority of the I/O (LOW, MEDIUM, HIGH)

- STARTBLOCK FIXED(10) - block where I/O starts on volume (only for volume I/O)

- BLOCKCOUNT FIXED(10) - count of consecutive blocks to read/write in this I/O

- STATE CHAR(7) - I/O state (PENDING, FAILED, SUCCESS, RETIRED FAILED, RETIRED SUCCESS)

- COMPLETEDCOUNT FIXED(10) - number of blocks transferred, in case of SUCCESS

- QUEUEID

- WORKERNAME

- PATH CHAR(256) - path to the volume or stream medium

Operation may contain:

- READ or WRITE for simple read/write on volume

- VECTOR READ or VECTOR WRITE for vector read/write on volume

- MULTI READ or MULTI WRITE for multi-vector read/write on volume

- STREAM TRANSFER for data transfer to/from stream

- OPEN STREAM, CLOSE STREAM, OPEN VOLUME or CLOSE VOLUME for open/close of volumes and

streams

- INIT TAPE for initialization of the tape drive

The table may contain some jobs several times, since the jobs are organized in various lists in the kernel:

- list of jobs on completion port: job will be displayed with empty task name and completion port name

- list of jobs on task: job will be displayed with task name and (if completion-port job) also with completion port

name

In case several tasks wait on the same completion port, the jobs on this completion port will be displayed once

without task name and once for each task with its task name. Task-specific jobs (i.e., those NOT using a

completion port) are displayed only once with appropriate task name.

The nature of the information is very volatile, as I/O jobs are normally processed quickly (milliseconds). If a job

hangs in the table for longer, or too many jobs are in the table, it's an indication of problem with I/O system or a

potential deadlock situation in the kernel.

This system table is primarily intended for MaxDB developers.

45

46

47

48

49

50

51

52

