
1

2

3

4

I/O threads are responsible for processing the write and read requests to and from data and

log volumes that are requested by the corresponding tasks. MaxDB supports asynchronous I/O

requests.

Until version 7.6 the number of I/O threads is primarily dependent on the number of volumes

in the database instance. As a rule, two I/O threads are activated for each data and log

volume and one for the writing of the database trace

As of version 7.7 I/Oworker threads are taken from a pool and activated on request; I/O is

done asynchronously. After finishing the I/O requests the workers are returned to the pool.

As of version 7.8 the user tasks utilize the asynchronous I/O for scans. The user tasks send

several parallel I/O orders to the I/O systems. They don’t wait until the I/O system has read

every single block from disk.

The Task Worker Threads are not used for I/O requests. User tasks use task Worker threads

to execute orders asynchronously e.g. in hot standby environment to send the log position to

the standby node.

MaxDB uses an own I/O concept and does not use the concepts for aynchronous I/O of the

operating system (Windows) any longer.

5

Pager tasks are responsible for writing data from the data cache to the data volumes. They

become active when a savepoint is being executed.

The system calculates the number of pagers. It depends primarily on the data cache size and

the number of data volumes.

The pager tasks use I/O worker threads to execute their I/O requests.

6

UKTs can themselves call I/O operations if

 the parameter EnableSynchronousTaskIO is set to “YES" and

 only one user task in the UKT is not in "Connect Wait" status or only one task is running in a UKT

(e.g. log writer)

Then the I/O request is not put into a queue and processed directly by the I/O thread.

The individual I/O operation can be executed more quickly if the UKT does not need to request an I/O

thread.

If a user task executes an I/O request by itself, other tasks cannot work until it is finished. The UKT is

blocked and waits for the reply of the I/O request. This option can compromise performance in parallel

operation.

Values: Default: YES

 Online change: YES

Pagers can combine data pages and write them with an I/O operation (vector I/O).

If for a table the cluster flag is switched on the database builds groups of pages that belong together

according to the B* tree chains before writing it to the disks. Thus data pages are kept together logically

to improve the use of prefetch algorithms of the storage systems during scan operations.

This parameter also influences the block sizes for read / write operations to data backups. Backup

templates provide a mechanism to adapt block sizes used for writing to the backup media.

If the cluster flag is used for tables the block size for writing a backup should be set according to the

DataIOClusterSize or should be a multiple of it. Otherwise the clusters would be dissected during

restore.

Values: Default: 64

 Min: 4, Max: 128

 Online change: No

9

From version 7.5, in the standard setting MaxDB sets a lock on open volumes that are in the file system.

You can change this behavior using the parameter UseVolumeLock.

Values:

Default: YES The database requests a lock when a volume is opened.

Online change: NO

If the parameter UseFilesystemCacheForVolume is set to NO then the database opens the volumes by

using the flag O_DIRECT, i.e. all volume read and write operations directly access the physical disks.

If it is set to YES a write-through-file-system-caching is enabled for volume I/O operations. Data is still

immediately written to the disk but a copy is done to the file system cache.

If the parameter UseFilesystemCacheForBackup is set to NO then – for a backup - the database

opens the volumes and backup media (in case of files) by using the flag O_DIRECT.

The database kernel cannot open the files in the volumes upon starting if one of the parameters is set to

NO although the option O_DIRECT is not supported by the file system. The mount options should force

direct I/O for the file system in those cases.

Please additionally have a look at note 993848 which gives recommendations concerning mount options

for different file systems. Note 977515 describes file system behaviors during backups and provides

special recommendations for the settings of these parameters.

Attention: By renaming the parameter it now got the inverse meaning.

Values:

UseFilesystemCacheForVolume

 Default: NO

 Online change: NO

UseFilesystemCacheForBackup

 Default: YES

 Online change: NO

12

For a better understanding of the current I/O concept we go back to the past and have a look at

the former concept which was used up to version 7.6.

The I/O queues are associated with the data volumes. If _IOPROCS_PER_DEV is set to 2

there are 2 I/O threads per volume.

Animated slide: Three I/O requests have to be processed.

1.The first 2 I/O jobs are sent to the first queue as the parameter _IOPROCS_SWITCH is set

to 2. I/O job 3 is sent to the second I/O thread.

2.I/O 1 and 3 can be completed at the same time; 2 is still waiting.

3.Afterwards 2 can be completed.

13

14

15

16

17

18

As the first measure the I/O queues were separated from the I/O workers.

19

The next step was to make sure that the I/O queues can work lock-free.

SIAO – single in all out

20

Animated slide: Three I/O jobs have to be processed by the same or by different tasks

1.The first job is sent to a job queue; a ticket is generated

2.The ticket is sent to the job ticket fifo and wakes up an I/O worker.

3.In the meantime a second I/O job is sent to the (same) queue; no ticket required. At the same

time job 3 is put into another queue; generation of a ticket required.

4.I/O jobs 1 and 2 are sent to I/O worker; job3 creates a ticket

5.I/O for 1 is executed. For 3 an I/O worker thread is opened and 3 is sent to it.

6.The I/O of job1 successfully done in data area.

7.I/O 2 and 3 successfully done in data area.

8.If there is no more request the I/O workers are returned to the pool.

21

22

With version 7.7 the I/O interface to the operating system has been reimplemented. Version

7.7 uses different parameters than version 7.6. The new I/O system has the following essential

advantages:

 No direct assignment of a I/O worker thread to a volume. This implies a better scalability

of I/O.

 I/O worker threads can be started on request. This prevents the use of unnecessary

resources.

 The synchronization of accesses to the I/O queues has been changed. The access is

done collision free. This additionally improves the scalability of I/O.

 Prioritization of special I/O requests. Dedicated jobs within the database (f.e. CHECK

DATA) can run with lower priority. Online operation is stressed less.

 Tasks can send I/O requests asynchroneously to the I/O system. They don‘t have to wait

until the I/O request has been fulfilled but can continue their work.

 Support of multiple database instances.

Usually it is not necessary to adapt these parameters. The database can start additional I/O worker

threads on request.

The parameter EnablePreAllocateIOWorker defines if I/O worker threads are already generated during

startup phase. As a default it is set to NO meaning that threads are only started when needed. This is

usually more effective. Be aware that if the configuration in near machine resource limits it may happen

that I/O worker thread resources are not available during runtime. F.e. this might prevent the execution

of a successful backup.

MinIOPoolWorkers defines the minimum number of I/O worker threads that were allocated during the

startup phase. If the parameter is set to a value smaller than the number of priorities, then at least as

many workers are started as priorities are defined.

With setting the parameter MaxIOPoolWorkers it is possible to restrict the number of I/O worker

threads.

(The value for MaxIOPoolWorkers is identical to MinIOPoolWorkers if EnablePreAllocateIOWorker is

set to YES.)

IOPoolIdleTimeout describes the maximum time in seconds an I/O pool worker is allowed to be idle

before it is released and the thread resources are returned to the operating system.

IOWorkerStackSize specifies the stack size for I/O worker threads in kilobytes which is as default the

platform-specific minimum stack size.

(The parameters shown above were introduced with the implementation of a multiple database concept.

This allows the use of several MaxDB databases within one instance. The parameters can be used to

restrict I/O resources per database within one instance. This concept did not come into effect so far.)

As soon as there are more than IOQueueFillingThreshold requests in the queue of an I/O thread the

system tries to put each additional I/O request to another I/O queue.

Values: Default: 1 (recommended)

Min: 0

Online change: YES

If there are not enough I/O worker threads available to handle all filled queues then the system

automatically starts an additional thread.

By defining the number of queues per volume and per priority you can influence the priorities of I/O for

certain requests.

VolumeIOQueuesForLowPriority:

 Default: 1

 Min: 1

 Max: 10

 Online Change: NO

VolumeIOQueuesForMediumPriority:

 Default: 4

 Min: 0

 Max: 20

 Online Änderung: NO

VolumeIOQueuesForHighPriority:

 Default: 5

 Min: 0

 Max: 10

 Online Änderung: NO

You can watch the states of current I/O requests in the system by the use of the console (x_cons) and

the system view IOJOBS.

Animated slide: Use of I/O queues with different priorities.

Jobs with higher priority can also be processed in queues which are designated for lower

priority. You see in the example that the first job with medium priority will be handled by the

IOQueueForLowPriority when it is currently idle.

When all L and M Queues are filled the next job with medium priority will not be handled by the

H Queue as this one is reserved for jobs with highest priority.

The priorities are provided by the kernel code. As am example jobs like CHECK DATA will run

with low priority.

27

MaxDB builds clusters for tables with the cluster flag to improve read performance for scans.

If blocks are written for cluster tables the pager tasks are looking for logically clustered blocks.

Logically clustered blocks are those with successive cluster keys. The cluster key is defined by

the primary key or another logical key which must not be unique on application side (f.e. time

characteristic). Pager tasks write those blocks adhesively to the data area.

A cluster built by pager tasks is only written to a separate FBM section if the number of blocks

within the cluster is at least ClusterWriteThreshold % of DataIOClusterSize and a free

section in the data volumes is available. During backup and restore the clustering is not lost. If

the percentage falls below ClusterWriteThreshold and no more free section is available the

cluster is splitted and written to different free blocks.

Values: Default: 80%

 Min: 0, Max: 100

 Online Änderung: Ja

If the database is filled to a high amount there is increased risk of writing too small clusters

because there are no more free FBM sections for bigger clusters. So the scan performance of

the system will be restricted.

FBM sections are released if they are only filled with a few blocks.

At the end of a savepoint it is checked by pager tasks if there are FBM sections with a low

filling grade. Server tasks read the affected blocks to the data cache and mark it as modified.

The blocks are written to other positions in the data area at the latest with the next savepoint.

The FBM sections are now free for large table clusters.

Values: Default: 10%

 Min: 0, Max: 50

 Online Change: YES

Pager tasks also build clusters for LOB values if the parameter UseLobClustering is set to

YES.

The storage of blocks for LOB data is also influenced by the parameter

ClusterWriteThreshold.

Values: Default: YES

 Online Change: YES

As of version 7.8 MaxDB uses parallel I/O requests to speed up table scans and table range scans. User

tasks read index level 1 pages into the cache, determine the volume block positions of the pages stored

in the separators by reading the converter and send asynchronous I/O requests to the I/O system. The

user task doesn‘t wait for every single I/O before sending the next I/O request.

User tasks use asynchronous I/O requests if the size of the scan exceeds the number of pages specified

as value of the parameter ReadAheadTableThreshold. The query optimizer evaluates the range size

before the statement execution starts.

The database uses asynchronous I/O for scans only, if the number of current running I/O requests is

below the value of MaxDataAreaReadAheadRequests. The determination of the current running I/O

requests happens during the operation on the index level 1 page. This operation prevents the system

from I/O overload situations. I/O orders for short SQL commands should not be blocked by asynchronous

parallel I/O.

Asynchronous I/O read requests have the priority low.

Values:

ReadAheadTableThreshold: Default: 100 Pages

 Min: 0

 Max: 2147483647

 Online Change: Yes

MaxDataAreaReadAheadRequests:

 Default: 2 x Number of Data Volumes

 Min: 0

 Max: 2147483647

 Online Change: Yes

Monitoring: select * from monitor_pages where description like 'Read ahead%'

When reading larger LOB values, it is a good idea to continue reading asynchronously from the volumes

while sending a read package to the application. This is done by a server task if the length of the LOB

value to be read exceeds the value of the parameter ReadAheadLobThreshold.

Values:

Default: 25

Min: 2 * CommandBufferSize / 8196 Max: 262144

Online change: YES

33

34

35

DBAN_CLUSTER_IO.csv (as of 7.9):

Information about clustered read and cluster compression operations

DBAN_IO.csv:

Read and write operations to cache pages and data pages

DBAN_IO_PREFETCH.csv:

Statistics about prefetching (requests, ignored requests, LOB requests)

DBAN_IOTHREADS.csv:

Number and duration of physical write and read operations (I/O threads)

DBAN_TASK_IO.csv:

Number and duration of physical writes and reads from perspective of the log writer, the user

task and the pager.

36

By default User Tasks do not execute the I/O itself, the I/O request is put into a queue and

processed by the I/O thread. To analyze the I/O performance DBAN_IOTHREADS.csv can be

used.

In this example we see that we have

• high number of read IO (PagesRead)

• very bad I/O times for reading (ReadTime in ms)

• Write I/O especially every 10 minutes (PagesWritten) – could be savepoint

• Very bad I/O times for writing (WriteTime in ms)

• I/O threads got a bottleneck (PendingRequests > 0), the I/O threads could not write/read

the data fast enough to avoid any wait situation in the I/O threads.

• In this example we should check the database disk configuration and the disk performance

on hardware level.

37

User_PRThread – Physical user reads via I/O threads

User_PRThreadPG – Number of pages read via I/O threads

AvgAbsRTime_UserPThread – Average absolute time (ms) for user reads via I/O threads

AvgRelRTime_UserPThread – Average relative time (ms) for user reads via I/O threads

38

On the following slides some examples of x_cons output are shown. They are simplified as the

complete output would be difficult to survey.

This presentation will not provide a detailed description of x_cons output but can only be

regarded as introduction and gives an impression which information can be found here.

39

x_cons show active

- Delivers a list of currently active tasks

- If the task is performing an I/O operation an appropriate status is displayed

Possible states (concerning I/O):

AsynClose (Stream Close):

Task closes I/O ports after saving or restoring

AsynCntl:

Task determines parameter or initializes a backup device

AsynIO(Stream IO):

Task executes asynchronous I/O operation (when saving or restoring)

AsynOpen(Stream Open):

Task opens I/O ports for saving or restoring

AsynWaitRead/Write(Stream Wait(R)/(W)):

Task waits for the end of an I/O operation during a save or restore operation

IO wait (W/R):

Task waits for the result of an I/O operation (W:write, R:read)

Vdetach(Detach Volume):

Task closes I/O ports (volumes, normal operation)

Vdualvectorio(Dual Vector IO):

Task executes a vector I/O operation (write or read) on two volumes in parallel

Vvectorio (Vector IO):

Task executes a vector I/O operation (write or read)

x_cons show io

- Counters for I/O on volumes

x_cons show t_cnt

- Counters for I/O on this task

40

x_cons show rte

- Old appearance

- Displays the status of RTE threads, including I/O threads

- Counters of I/O on UKT and I/O threads

x_cons show aio (no slide)

- Counters for I/O on stream media (backup)

- Shows statistics of running and past backups/formatting

41

x_cons show rte

- Same command but with a difference appearance

- Displays the status of RTE threads, including I/O threads

- Counters of I/O on UKT and I/O threads

42

The status of each concurrently active I/O worker thread and the number of I/O operations are

displayed with the name and priority. Each I/O worker can serve any queue of the same or

higher priority jobs. Workers are picking the next queue to process from ticket queue.

43

x_cons show iopending

Shows running I/O jobs in the system.

x_cons show cport

Shows registered completion ports and pending I/O on them. The display is similar to „show
iopending“ but only shows I/O on completion ports.

The first column „O“ shows the operation (f.e. ‚F‘ format, ‚w‘ write, ‚r‘ read).

Flg indicates ‚A‘ asynchronous I/O, ‚C‘ I/O on completion port, priorities of I/O.

State shows the I/O job status (f.e. pending, in progress, success, failed)

Input/output completion port (IOCP) is an API for performing multiple simultaneous
asynchronous input/output operations. An input/output completion port object is created and
associated with a number of sockets or file handles.. The I/O completion port manages multiple
threads and their concurrency.

“I/O completion ports provide an efficient threading model for processing multiple
asynchronous I/O requests on a multiprocessor system. When a process creates an I/O
completion port, the system creates an associated queue object for requests whose sole
purpose is to service these requests. Processes that handle many concurrent asynchronous
I/O requests can do so more quickly and efficiently by using I/O completion ports in conjunction
with a pre-allocated thread pool than by creating threads at the time they receive an I/O
request.” (info from Microsoft Developer Network)

44

Displays detailed measurement values for individual database tasks.

If time measurement is switched on (x_cons time enable) you can get more information about

the relative/absolute duration of I/O operations.

dev_read_io: number of I/Os via I/O threads (dev)

dev_read_io: number of pages written via I/O (threads (dev)

45

46

47

48

49

50

51

