
1

Together with SAP MaxDB database tools, you can use third-party backup tools to backup and restore data. You
can use third-party backup tools for the following actions:
Backing up to data carriers
•Complete data backups
•Incremental data backups
•Log backups
•Archiving log backup files
It is not possible to save the data created by the automatic log backup directly to external backup tools. The
automatic log backup can only create versioned files, which have to be saved to an external backup tool later on.
Restoring backups
•Restoring the database using data backups, incremental backups, log backups, and archived log backups

In one of the previous SAP MaxDB expert sessions the general concept of backup and recovery was explained.
It was also shown, how a backup directly to files or tapes can be created. This session provides detailed
information about the usage of external backup tools like Networker and Tivoli Storage Manager or the Backint
interface. The first chapter concentrates on the general usage of external backup tools. It is explained, which
tools are supported and how a backup to an external backup tool is controlled.
Afterwards the usage of different backup tools is explained in more detail – especially how these backup tools
need to be configured for backing up a MaxDB instance.
The next chapter explains how a recovery can be performed, when an external backup tool is used.
Then we show in a short live demo, how a backup and recovery with the backint interface is done, using
Database Studio.
And the last chapter provides an overview of the log files, to enable you to analyze errors which might occur
during such a backup or recovery.

2

Backups for SAP MaxDB are always triggered by the DBM Server – either through the DBMCLI or through
Database Studio. The DBM Server is also the component which starts the external backup tool. The backup
procedure works as follows:
1. The DBM Server sends the backup command to the database kernel.
2. The database kernel creates and opens one or more pipes (as specified in the backup template used by the

DBM Server).
3. The DBM Server starts the backup client of the backup tool as soon as the database kernel opens the first

pipe. Which backup tool is to be used is also specified in the backup template.
4. The backup tool opens the pipes, transfers the data to the backup server, and stores it on tape.
5. The database kernel records the result of the backup in the backup history.
6. The DBM server requests the unique backup IDs (External Backup ID) from the backup tool and enters

these in the External Backup History (dbm.ebf). -This makes it possible to link the backup IDs generated by
the database kernel with the backup ID of the external backup tool.

7. The backup is logged in the External Backup Protocol (dbm.ebp).
External backup tools can not be used directly for automatic log backups. Automatic log backups are triggered
directly by the database kernel, which isn’t aware of the configuration of external backup tools. Automatic log
backups can only be performed to versioned files. However, the usage of a so called log staging area is
supported which can be configured in a way that the versioned files created by the database kernel are backed
up to an external backup tool. Details about this follow later in the session.

To be able to support any backup tool which implements the Backint for Oracle interface, SAP provides an
implementation of the Backint for MaxDB interface.
This program can be configured to work with an implementation of the Backint for Oracle interface (works as an
adapter).

4

If automatic log backup is switched on, the database system continuously writes redo log entries to backup files.
The database kernel only supports to create automatic log backup files into versioned files – direct usage of
external backup tools or tapes is not possible. This is because the support of external backup tools is
implemented in the DBM Server – not the database kernel. But the automatic log backup is completely managed
by the database kernel.
After the automatic log backups are completed and stored in the log staging area, these files must be
postprocessed, that is, saved to a secure destination (e.g tapes, external backup tools).
In earlier versions of the SAP MaxDB (< 7.4.02), administrators had to create their own scripts/concepts to do
this.
The "archive_stage" DBMCLI command now provides a simple solution, whereby the DBM Server assumes the
task of sending the AutoLog versioned files to an external backup solution. The DBM Server always knows which
files are being written and which are ready for further processing at any time.
The DBM Server takes the finished files from the log staging area and sends them to the external backup tool
using an existing log backup template.
When the archive_stage command is started the system copies all the log backup files that
• exist at the start of the archiving process,
• were created using the specified backup template,
• and are listed in the backup history.
If not specified otherwise, then the original log backup files are deleted after they have been successfully
archived on the external backup tool.
The archive_stage command should be scheduled regularly using an OS-scheduler (e.g. cron) to archive the
created log backup files. However, it must not be started, while another backup of this database to the external
backup tool is already running.

This slide explains the syntax of the archive_stage concept: We strongly recommend that you use the VERIFY
option. After the versioned files have been transferred to the external backup tool, it allows you to retrieve these
files and compare the data stream with the original files. Using this functionality, you can continuously test
whether the external backup solution is functioning safely.
The DBMCLI command archive_stage must be scheduled using cron, at or a central planning calendar. This can
also be done remotely using the remote capabilities of the DBMCLI.

With archive_stage_repeat, MaxDB makes it possible to send the versioned files to the external backup tool
more than once. This enables you to send the files to different tapes or tape drives.
At present, the only restriction is that archive_stage_repeat must be run in the same DBM Server session in
which archive_stage was previously executed.

The next chapter explains, how different external backup tools need to be configured, to be able to create a SAP
MaxDB backup. At first the configuration of Legato Networker is explained.

8

You can connect NetWorker using the command line clients SAVE, RECOVER and MMINFO that are included in
the Networker software, or using the Backint for Oracle interface. The command line clients deliver better
performance and this is the procedure described on the following slides.

The DBM Server uses the backup template definition to request the backup from the database kernel.
The database kernel opens the pipes sequentially.
The DBMServer uses the configuration file to request the NetWorker client to backup the data from the pipes as
soon as the database kernel opens the first pipe.
The NetWorker Client opens the pipes, transfers the data to the backup server and writes the data to tape.

9

The absolute name of the pipe must be the same at backup and restore, due to NetWorker restrictions. Note also
that linked files or directories are resolved by the NetWorker. For example, if you backup on a computer A via
/tmp/nsr_pipe, and /tmp is only a link to /var/tmp, the system must be recovered with the restore on a computer B
via the pipe /var/tmp/nsr_pipe.
This also results in special requirements for parallel backups: as a save/recover command is started for every
pipe and NetWorker requires the exact name of the relevant backup pipe for the recovery, the template group
must be configured for the recovery in exactly the same way as for the backup. This includes the sequence of
the templates in the template group.

If you want to use NetWorker on Unix to create a database backup on one computer and to restore this backup
in a second database on a second computer, both the databases must be run by operating system users with the
same user ID. Otherwise NetWorker fails and consequently, MaxDB cannot restore the backup in the second
database on the second computer.

The value for environment variable NSR_ENV can be made known on the database server as follows:
dbmcli -d <database_name> -n <database_computer> -u <dbm_operator>,<dbm_operator_password>
dbm_configset -raw NSR_ENV <value>
<value>: Value of the environment variable NSR_ENV
Details regarding the usage of environment variables for the DBM Server can be found in the MaxDB
documentation.

The timeout used by the DBM Server for monitoring NetWorker can be configured according to Note 600464.

10

In each line of the configuration file you can enter one parameter. For this, a key word must be given at the
beginning of the line. Lines without one of the permissible key words are ignored. The key word is followed by
the desired value of the relevant parameter. If this value contains a space character, the value must be set in
quotes.

Detailed information about all possible parameters is available in the SAP MaxDB online documentation.
This configuration file specifies that
- the NetWorker server runs on the server p47579,
- the NetWorker client is installed on the database server under "C:\Program Files\nsr\bin",
- backups go into the NetWorker pool MAXDBPOOL,
- they have a NetWorker expiration time of one year,
- the NetWorker program recover is called up without the option –v,
- the backup time for the identification of the backups is used,
- the output of NetWorker program save is examined for errors and checked for a success message at every

backup,
- the errors "unknown error 109 (0x6d)" and "using unlocked access" are ignored,
- with parallel backups, the SAVE commands are issued every 2 minutes
- the backups are stored under the name MAXDB_<database_name>_on_ <database_server> in NetWorker,
- it is expected that MMINFO puts out dates in the format "yyyy-mm-ddHH:MM:SS AM".

11

In the next part the configuration of Tivoli Storage Manager is explained.

12

You can connect TSM using the TSM client adint2 or using the Backint for Oracle interface.
With adint2, you achieve better performance. However, this program is not available on all platforms.
The adint2 program is not contained in a standard installation of the TSM client. The program is provided
separately by IBM. For more information, see http://www.ibm.com
Using adint2 is the procedure described on the following slides.

The DBM Server uses the backup template definition to request the backup from the database kernel.
The database kernel opens the pipes sequentially.
The DBMServer requests adint2 to backup the data from the pipes as soon as the database kernel opens the
first pipe.
Adint2 opens the pipes, transfers the data to the backup server and writes the data to tape.

13

http://www.ibm.com/

To carry out a backup/recovery to/from TSM, you must create a pipe-type backup template. In this template TSM
must be specified as the backup tool to be used. Bear in mind that pipes on Windows have names of the form
\\.\pipe\<pipe name> and that for a backup/recovery on UNIX, the specified pipe must not exist in the file system.

To enable the Database Manager on the database computer to access the required environment variables
ADINT and ADA_OPT, you must define these variables using Database Manager CLI.
ADINT: Specifies the directory in which the program adint2 (Unix) or adint2.exe (Microsoft Windows) is stored.
Specify this directory as an absolute path without a closing slash (/) or backslash (\).
ADA_OPT: Absolute name of the adint2 configuration file. An example configuration file initSID.utl is located in
the directory of the adint2 program.
dbmcli -d <database_name> -n <database_computer> -u <dbm_operator>,<dbm_operator_password>
dbm_configset -raw <variable> <value>

You can configure the timeout used by the DBM Server to monitor adint2 in accordance with note 600464.

14

In the next part the Backint interface is explained. Backint is the short form of Backup Interface and is the genus
for two backup tool interfaces – Backint for Oracle and Backint for MaxDB. Both interfaces define a command
line tool, that can be used by database management tools like MaxDB's DBM Server to backup and recover data
into or from a backup tool.

15

Many third-party backup tools have a Backint for Oracle interface. In principle, the program Backint for Oracle
can backup any files in the file system, regardless of whether the Oracle database system is installed on the
computer or not. To connect Backint for Oracle to SAP MaxDB, SAP provides an adapter program with SAP
MaxDB which implements the Backint for MaxDB specification. Backint for Oracle actually saves the backup data
using the backup tool onto a permanent backup medium. To integrate Backint for Oracle, you therefore need
both Backint for MaxDB contained in the delivery of SAP MaxDB and Backint for Oracle provided by the backup
tool manufacturer. The adapter program (Backint for MaxDB) was implemented to enable backups via pipes to
external backup tools which don‘t support pipes as input media.
The backup procedure using the Backint for Oracle interface is controlled by the DBMServer:
• The DBM Server uses the backup template definition to request the backup from the database kernel.
• The database kernel opens the pipes sequentially.
• The DBMServer requests Backint for MaxDB to backup the data from the pipes as soon as the database

kernel opens the first pipe.
• Backint for MaxDB opens the pipes, transfers the data to temporary files (of configurable size) and requests

Backint for Oracle to backup these files.
• Backint for Oracle transfers the temporary files to the backup server.
• Backint for MaxDB deletes the temporary files.
If necessary, the procedure of creating and saving temporary files is repeated until all backup data has been
processed.
To be able to control this procedure, the DBMServer needs the backup template definition and a configuration
file, which contains e.g. the information, where the Backint for MaxDB can be found.
The configuration is carried out with the following steps:
• Use the database manager (DBMCLI or Database Studio) to create a backup template. The Backup Tool has

to be specified as Backint and the pipes used must not exist.
• Set the environment variable BSI_ENV so that it contains the path of the configuration file. If you do not set

BSI_ENV, the system looks for the bsi.env file in the run directory of the database.
• Create the configuration file.

16

In our demo scenario this configuration file is called bsi.env and it is located in directory C:\TOOLS\parfiles.
Therefore the environment variable BSI_ENV has been set to this directory with the DBMCLI command
dbm_configset –raw BSI_ENV “C:\TOOLS\parfiles\bsi.env”.
In every line of the configuration file, you can specify one parameter. To do this, you must specify a keyword at
the beginning of the line. Lines without a key word will be ignored.
Detailed information about all possible parameters is available in the SAP MaxDB online documentation.
This example configuration file determines that the database manager calls the tool
C:\sdb\expertdb\db\bin\backint.exe.
The standard input, standard output and standard error output files for Backint for MaxDB are created by the
DBMServer as C:\TOOLS\parfiles\backint4MAXDB.in, C:\TOOLS\parfiles\backint4MAXDB.out or
C:\TEMP\backint4MAXDB.err files.
The Backint program uses the parameter file C:\TOOLS\parfiles\backintmaxdbconfig.par.
If the process is successful the database manager will wait for a maximum of 10 minutes for the end of Backint
for MaxDB. In case of an error, it will only wait for 5 minutes.

17

The backup data of the database system is received by one or more pipes and saved in temporary files. Then
Backint for MaxDB calls the third-party backup tool and saves the temporary files by using the Backint for Oracle
program.
The names of the files and/or pipes to be backed up are specified by the DBMServer in the in_file.
The number and size of the temporary files to be created have to be specified by the administrator in the
parameter file of the Backint for MaxDB. Additionally the location of the Backint for Oracle program needs to be
specified in this parameter file.
The in_file, out_file and the error_out_file are created by Backint for MaxDB and are used by the DBMServer to
provide information about a successful or failed backup in the DBMServer log files.

To speed up the backup process, it is possible to enable parallel backups. To do this, you define a group of
parallel data carriers and a separate staging area for each pipe.

18

This is an example for the parameter file. In our example it is called C:\TOOLS\parfiles\backintmaxdbconfig.par.
Define an attribute in each row of the parameter file. For this, you have to specify defined keywords at the
beginning of the line. The system ignores rows that do not begin with keywords.
Detailed information about all possible parameters is available in the SAP MaxDB online documentation.
This example configuration file specifies that the adapter program can save or restore a maximum number of two
pipes at the same time. The temporary files generated in this process in each case reach a size of 200 MB as
long as the end of the pipes is not reached.
It is also possible to specify the size of these files in Byte (default, if no unit is specified), KB or GB.
If one of these files is fully created, this is saved using the Backint for Oracle: "C:\TOOLS\backint4oracle.cmd".
The Backint for Oracle program uses the parameter file C:\TOOLS\parfiles\backint.properties.
Upon completion of a backup, the adapter program stores in the history file C:\TOOLS\BackintHistory, which
temporary files belong to which pipe. This information is required in case of a recovery.This history file is then
saved with another Backint for Oracle call.
The standard input, standard output and standard error output files are C:\TOOLS\parfiles\Backint4Oracle.in,
C:\TOOLS\parfiles\Backint4Oracle.out and C:\TOOLS\parfiles\Backint4Oracle.err.
If the temporary files are created at different speeds and one temporary file is already complete, the adapter
program waits a maximum of 30 seconds for one of the temporary files to be fully created. If none of the other
files is completed within 30 seconds, the existing temporary file is backed up using Backint for Oracle.

19

As already explained, Backint for Oracle is only able to backup files – no data from pipes. Therefore it cannot be
used without the Backint for MaxDB interface to create a backup of a MaxDB database.
Backint for Oracle is implemented by the backup tool vendor – not by SAP. It is available for a large number of
backup tools.
The needed configuration files are similar to those needed for Backint for MaxDB:
Backint for Oracle learns from the par_file2, where the backup tool can be found and how to use it. The format of
this configuration file is described by the backup tool vendor. Some Backint for Oracle implementations do not
need such a configuration file (but use environment variables instead).
Backint for Oracle learns from the in_file which files (or raw devices) must be backed up.
Backint for Oracle reads the data and transfers it to the backup tool.
The backup tool writes the data to tapes.
Backint for Oracle reports to the out_file which files could be backed up successfully.
For successfully backed up files Backint for Oracle supplies a Backup Identifier (BID), but only the combination of
user, file name and BID is identifying the backed up version of a file unambiguously
Backint for Oracle supplies a return code following the rule: 0 for success, 1 for success with warnings and 2 for
errors.

20

After seeing the configuration of the two Backint programs separately, this slide shows the complete
configuration. You generally have to create three configuration files: a configuration file for the Database
Manager, a parameter file for the Backint for MaxDB (par_file) and a parameter file for Backint for Oracle
(par_file2).
The DBMServer learns the name of the pipes and that Backint for MaxDB should be used from the backup
template.
From the configuration file the DBMServer learns where to find Backint for MaxDB, where to find the
parameterfile par_file of Backint for MaxDB and which files must be used as in_file and out_file (and error_out
file) for Backint for MaxDB.
From the file par_file Backint for MaxDB learns, where to find Backint for Oracle, where to find the parameter file
par_file2 of Backint for Oracle and which files must be used as in_file2 and out_file2 (and error_out2 file) for
Backint for Oracle. It also learns where to find its own history file.
The DBMServer supplies the names of the pipes to Backint for MaxDB via the file in_file and interprets the
Backint for MaxDB output via the out_file.
Backint for MaxDB reads the backup data from the pipes and writes it to temporary files, after that it calls Backint
for Oracle.
From its configuration file par_file2 Backint for Oracle learns where to find the backup tool and how to use it. The
format of this configuration file is described by the backup tool vendor. Some Backint for Oracle implementations
do not need such a configuration file (but use environment variables instead).
Backint for MaxDB supplies the names of the temporary files to Backint for Oracle via the file in_file2 and
interprets the Backint for Oracle output via the out_file2.
Backint for Oracle backs up those temporary files with the help of the backup tool to tapes.
Backint for MaxDB deletes the temporary files.
These steps are repeated until all data of the pipes is backed up to tapes.

21

It is essential for your system‘s safety to be able to create backups successfully. However, it is just as important
to be able to restore such a backup. The next chapter therefore explains how the restore of a backup created
with external backup tools works.

22

If you follow SAP’s recommendations for the disk configuration of your database instances and the backup
strategy, the current log entries and at least four backup generations are always available for you to restore the
content of the database instance if problems occur. It is then very unlikely that you will lose any data.
If a data volume sustains physical damage, a complete database recovery needs to be performed. The basis for
this type of recovery are normally the complete and incremental data backups as well as log backups of the
latest backup generation.
If a logical error occurs in the SAP system, making it necessary to reset the system to a previous state, you also
do this by performing a database recovery using a complete data backup and then importing incremental data
and log backups. The administrator can specify whether all available log information is to be recovered up to the
most recent point in time possible, or only up to a specific time in the past without the most recent transactions.
To ensure you are well prepared for a recovery, we recommend that you train at least two employees to regularly
test a complete database recovery using the backups from the production system. For these tests, you require a
test server comparable to the database server. This could, for example, be your quality assurance system.

Every time a backup is created with an external backup tool, the backup tool creates a so called external backup
identifier (EBID) to identify this specific backup. This EBID is needed, when such a backup should be restored.
Independent of the external backup tool used, the EBIDs of available backups can be obtained with the DBMCLI
commands backup_ext_ids_get and backup_ext_ids_list. With the first command, the DBMServer inquires the
backup tool regarding available backups. The resulting list of available backups can be requested via the
backup_ext_ids_list and the backup_ext_ids_listnext command. Database Studio also displays the information
about the External Backup IDs of the backup in the backup history under Details in addition to the media
information.
The database kernel is not required to determine the data. This is determined by a communication of the
DBMServer with the external backup tool. Depending on the used external backup tool, the specific client tool of
this backup tool is used to get the required information – e.g. for backint function INQUIRE is used, for Networker
tool mminfo is used.
The different backup tools create different external backup IDs. Examples for EBIDs are:

P47579_DB72_2001.03.30_15.51.20_SAVEDATA_ADSM
NST 985877420 P47579
DB72 985963853 \\.\pipe\b1

External Backup IDs may contain spaces. If the External Backup Identifier contains spaces, it must be put in
quotes ("<ExtBackupID>") when used in DBMCLI commands.

24

The DBM Server controls and manages the recovery process.
The DBM Server uses the backup template to identify the external backup tool to be used and then determines
how to proceed.
The DBM Server sends the recovery command to the database kernel, which then sequentially opens the
required pipes.
When the database kernel attempts to open the first pipe, the DBM Server starts the client of the backup tool.
The list of External Backup IDs provided via the recover_start command is used to request the correct backups
from the backup tool.
The backup tool provides the required backup data in the pipes. The database kernel receives the data and
distributes it across the data volumes.
After the action is completed, the DBM Server interprets the response of the database kernel and the return code
of the backup tool and reports the result of the recovery attempt.
For more information (such as which DBMCLI commands are used for this), see http://maxdb.sap.com.

25

http://maxdb.sap.com./

Next part of this session is a live demo of a backup and a recovery using the Backint for MaxDB and Backint for
Oracle interface. The backup and recovery are started via the administration tool Database Studio.
These slides contain only a few screenshots of the shown demo, with some additional information.

26

Before you can perform backups, you must define the relevant backup templates. You can create and change
backup templates or template groups of parallel backup media in Database Studio in the backup section of the
Administration window by choosing Templates.
To be able to create a parallel backup template, you must set the value of the "MaxBackupMedia" parameter to
match the number of individual templates in a parallel backup template. For example, if a template group is to
comprise 10 individual templates, the value of the "MaxBackupMedia" parameter must be "10“ (or higher).
You can specify the following information for the template:
Name of the backup template. This name is freely definable and is not dependent on the storage location used
(Device/File).
Backup Type: Specify the type of backup for which this template is to be used.
Device Type: Tape, file, or pipe – if an external backup tool is to be used, the Device Type must be set to pipe.
Backup Tool: Type of external backup tool (if applicable)
Device/File: Path to a device, name of a defined pipe, or name of a file including its path. If you do not specify a
path, a file is created in the run directory of the database instance.
Size: Maximum size of the backups that can be created on this template (if you do not make an entry in this field,
files of unlimited size can be created).
OS Command: In this field, you can specify operating system commands for backups to tape.
Overwrite: This option enables you to perform successive backups to the same file, overwriting the previous
backup each time. Use this function carefully since it makes it impossible to restore one of the previous backups.
Block Size: The entry in this field defines the size of the data blocks to be written to the template. If page
clustering is used for the instance, the value in this field must be larger than a multiple of the cluster size used
(minimum block size, for example, of "64").
Autoloader: Select the Autoloader checkbox if you want to use a tape device with automatic tape swapping.
The above examples show one template which can be used for a backup to Networker and a template group
comprising of 2 single templates which can be used for a parallel backup with Backint.

The Backup History contains information about all successful and unsuccessful backups. Detailed information fo
each entry is available in the Details section. Here also the external backup ID is displayed, if an external backup
tool was used.

28

29

When using DBMCLI, a backup of the database is done with the help of the backup_start command.
As the DBMServer recognizes the backup tool to be used from the backup template, there is no difference in the
backup command between a backup with and a backup without a backup tool.

As more than one DBMServer command is needed for displaying the External Backup Identifiers, an interactive
dbmcli session must be used.
The columns of the displayed list are separated by the pipe character (|).
The list has the following format:
<Availability>|<External Backup ID>|<backup type>|<date_time>|
If in an answer to backup_ext_ids_list or backup_ext_ids_listnext a line with a keyword CONTINUE follows the
line with the keyword OK, the next part of the list can be requested with the backup_ext_ids_listnext command.

A restore is done with the commands recover_start and recover_replace (for restoring more than one log
backup).
The keyword EBID (or ExternalBackupID) is followed by a comma-separated list of External Backup IDs. With
parallel backups, all External Backup Identifiers of the individual backup parts must be transmitted as a comma-
separated list enclosed in double quotes ("<ExtBackupID_1>, <ExtBackupID_2>, ..., <ExtBackupID_n>").
Further Examples:
recover_start ADSM LOG EBID P47579_DB7_2001.03.30_15.51.20_SAVELOG_ADSM
recover_start NSR DATA EBID "NST 985877420 P47579"
recover_start BACK PAGES EBID "DB72 985963853 \\.\pipe\b1,DB72 985963913 \\.\pipe\b2"

In case a backup or a recovery fails, you need to know, how the problem can be analyzed. This is explained in
the next chapter.

30

The database manager log file contains the backup and recovery calls and – if an error occured - the error
message. Therefore this log file can (in addition to the backup history and the external backup history) be used to
check the success of a backup/recovery.
Detailed information regarding the backup/recovery can be found in the external backup protocol (or if this file
has already been overwritten in the external backup log). In addition to information about the configuration
parameter of the external backup tool, dbm.ebp contains information about the commands sent to the database
kernel as well as the backup tool call. The error position makes it possible to identify which component was
responsible for the problem.
Depending of the cause of the error, it might be necessary to analyze log files of the backup tool.
In case the cause for the backup or recovery failure is not the communication with the external backup tool or
problems of the external backup tool, but in the actual processing of the data by the database kernel, the
database messages file should be checked for more detailed information regarding the problem.

31

In file dbm.prt you can see that the backup was started to a backup template called DataBackupBackint. The
exact statement sent to the database kernel is logged as well as an error messages.
Error message „The backup tool failed with 2 as sum of exit codes. The database request was canceled and
ended with error -903.“ indicates, that the backup tool caused the problem and that the database request was
only cancelled as a result of that failure. So the error analysis has to concentrate on the backup tool and its
configuration.

dbm.prt is stored in the run directory of the database (default: <indepdatapath>/wrk/<SID>).
Access via DB50: Properties -> Files -> DBMPRT
Access via Database Studio: Diagnosis Files -> Database Manager Log File

32

For diagnosing problems with backups using external backup tools, the log file dbm.ebp plays a decisive role.
In addition to information about the configuration parameter of the tool, dbm.ebp contains information about the
commands sent to the database kernel as well as the backup tool call. The error position makes it possible to
identify who was responsible for the problem.

dbm.ebp is stored in the run directory of the database (default: <indepdatapath>/wrk/<SID>).
Access via DB50: Properties -> Files -> BACKEBP
Access via Database Studio: Diagnosis Files -> External Backup Log File (former External Backup Protocol)

Note that this file is overwritten after each start of the DBM server when it communicates with the external
backup tool. A new DBM server is started with each dbmcli call, to name one example.

Because the file dbm.ebp is promptly overwritten, there is a summary of it called dbm.ebl. This log file contains
the last <n> logs, the number of which can be configured with the DBM parameter DBM_EBLSIZE.

The file dbm.ebl is stored in the run directory of the database.
Access via DB50: Properties -> Files -> DBMEBL
Access via Database Studio: Diagnosis Files -> External Backup Log

33

This is the beginning of file dbm.ebp. You can see that variable BSI_ENV is set to C:\TOOLS\parfiles\bsi.env.
Next, the configuration parameters read from this file are listed. In case a parameter is spelled incorrectly, this
would be visible here, as unknown keywords are explicitely listed.
In this example, the configuration file is fine.
The backup request was sent to the database successfully and afterwards Backint for MaxDB was started
successfully as well.
So far, everything looks fine – however, the log file is continued on the next slide…

34

Once the database kernel and the backup tool are started, the DBMServer determines their state regularly. As
you can see, the backup tool failed shortly after it was started, error message „The backup tool process has
finished work with return code 2.“ is logged.
As a consequence of that, the database request was cancelled by the DBMServer.
In the output information of Backint for MaxDB you can find the reason for the failure: the parameter file
'C:\TOOLS\parfiles\backintmaxdbconfig.par' specified in the bsi.env file could not be found by Backint for
MaxDB. Therefore the tool could not start to work on the backup request.

35

The file dbm.ebf contains the backup history, the backup ID, external backup IDs and error messages. This file is
written consecutively and is NOT cyclically overwritten, so that the entire backup history is available for support.
If a backup tool was able to backup successfully, but could not determine the external backup ID, the backup is
entered as failed in the backup history.

dbm.ebf is stored in the run directory of the database (default: <indepdatapath>/wrk/<SID>.
Access via DB50: Properties -> Files -> BACKEBF
Access via Database Studio: Diagnosis Files -> External Backup History

36

In case the cause for the backup or recovery failure is not the communication with the external backup tool or
problems of the external backup tool, but in the actual processing of the data by the database kernel, the
database messages file should be checked for more detailed information regarding the problem.

In case you‘re ever in need of more information on any kind of subject on SAP MaxDB (or liveCache), please
direct your search towards:

The SAP MaxDB site: maxdb.sap.com. This site contains a lot of information, ranging from our official
documentation to the recordings of previous Expert Sessions
Next is the official SAP Education site: it contains MANY offers for all kind of courses on any SAP topics,
including for example, the ADM515 administration course on SAP MaxDB and the UMEW60, concentrating on
SAP MaxDB monitoring and optimization.
Then, we have the heavily used SAP MaxDB forum. In case of questions on SAP MaxDB products, please
register and join the Community!
Lastly, we have our also equally well visited Wiki pages. We’ve added a lot of information here that might
interest any SAP MaxDB DBA, including a documentation on tools like x_cons and a Support Guide.

Further information on the topic of external backup tools can also be found in SAP Note 822240 (FAQ: MaxDB
and external backup tools).

42

