
1

2

3

4

A database instance consists of the following three parts:

Database kernel (process level)

Caches (memory level)

Volumes (hard disk level)

5

A physical disk or part of a physical disk, respectively, is denoted with the item „volume“.

A database instance is installed on three disk areas:

 Data volumes

 Log volumes and

 Database software.

User data (tables, indexes, etc.), the SQL catalog and converter pages are stored in the data

volumes. Data belonging to one table is evenly distributed on all data volumes by the use of

an internal striping.

Changes on data are stored in form of redo log entries within the log volumes. This makes

sure that in case of a required recovery all changes that are not contained in the recent

complete data backup can be reloaded.

To guarantee secure database operation make sure to mirror the log volumes (set database

parameter UseMirroredLog=YES). If the log volumes are not mirrored by the database itself,

the disks have to be mirrored physically or by the operation system.

Redo log entries only contain changes of transactions, i.e. the after images. Undo log entries

are administered separate from redo log entries in the data area.

Database software delivered by SAP comprises executable programs, source texts and

utilities allowing to generate database processes and to work with the database instance.

The software is installed within the file system in a defined directory with sub directories. Log

and diagnosis files generated during database operation are also stored here.

6

The MaxDB kernel consists of three levels:

SQL statements sent to the database system are received by the highest

level, the SQL Manager (previously known as the application

communication layer).

They are then sent in compressed form to the Data Access Manager. The

Data Access Manager is divided into the communication base layer (KB)

and the base data (BD) layer.

The necessary individual queries are determined on the communication base

layer.

The required data is then procured on the lower-level base data layer.

The data records are then sent through the layers to the querying application.

In recent years, the KB and BD layers have increasingly merged.

Since version 7.4 there has no longer been a sharp division between the two

layers.

7

Let's have a look at a relatively simple SELECT statement:

The SQL Manager receives an SQL statement that was sent as an SQL

packet and first checks the syntax for correctness.

It converts the incoming SQL packets into stack code with various entries,

each with a length of 8 bytes.

Catalog management, that is, the determination of information about the

existing tables and their columns, also takes place on this layer.

Finally, the Optimizer in the SQL Manager decides if the data should be

accessed via a secondary index.

In our simple example, we assume that the Optimizer has opted for an

access strategy via the secondary index kna1_1 .

8

Transaction management and lock management are executed on the

communication base layer of the Data Access Manager.

Transaction management manages information about active transactions in

the database as well as the changes they make to data.

Lock management provides memory lists containing all objects of an instance

that are locked at a certain point in time as well the transactions that

correspond to them.

In the case of complex SQL statements (such as joins), access to individual

tables and indexes is coordinated.

In our simple example, the KB layer will first access the index table kna1_1

and then, using the determined index entries, directly access the appropriate

rows of table kna1.

9

The base data layer of the Data Access Manager executes accesses to data

that is either still located in the data volumes or is already in the cache.

The BD layer returns the results records to the KB layer.

10

11

A user kernel thread forms a subset of all tasks (internal tasking).

The database kernel runs as one process divided into threads. Threads can

be active in parallel on several processors within the operating system.

Threads perform various tasks.

User kernel threads (UKT) consist of several tasks that perform various

tasks. This tasking enables more efficient coordination of tasks than

operating system tasking that employs individual threads.

The runtime environment (RTE) defines the structure of the process and the

user kernel thread.

12

When the runtime environment is started, that is, when the database instance is started in

the Admin state, first the coordinator thread is generated. This thread is of particular

importance.

 When started, the coordinator thread uses database parameters to determine the

configuration of the memory and process of the database instance. For this reason,

changes to database parameters take effect only after you have restarted the database

instance.

 The coordinator thread also coordinates the start procedures of the other threads and

monitors them while the database instance is in operation.

 If operating errors occur, the coordinator thread can stop other threads.

The requestor thread receives logon requests from the user processes to the database. The

logon is assigned to a task within the user kernel thread.

The console thread collects information about the internal states of the database kernel

when x_cons is being used.

The clock thread and the timer thread calculate internal times, for example to determine

how much time was required to execute an SQL statement.

13

I/O threads are responsible for processing the write and read requests to

and from data and log volumes that are requested by the corresponding

tasks. MaxDB supports asynchronous I/O requests.

Until version 7.6 the number of I/O threads is primarily dependent on the

number of volumes in the database instance. As a rule, two I/O threads are

activated for each data and log volume and one for the writing of the

database trace

As of version 7.7 I/Oworker threads are taken from a pool and activated on

request; I/O is done asynchronously. After finishing the I/O requests the

workers are returned to the pool.

As of verison 7.8 the user tasks utilize the asynchronous I/O for scans. The

user tasks send several parallel I/O orders to the I/O systems. They don’t

wait until the I/O system has read every single block from disk.

The Task Worker Threads are not used for I/O requests. User tasks use task

Worker threads to execute orders asynchronously e.g. In hot stand by

environemnt to send the log position to the stand by node.

14

Each user session is assigned exactly one user task at logon.

The maximum number of available user tasks is determined by the database

parameter MaxUserTasks. This parameter also restricts the number of user

sessions that can be logged on to the database system simultaneously.

The database parameter MaxTaskStackSize determines the memory usage

of the user tasks.

The general database parameter MaxCPUs specifies the number of user

kernel threads among which the user tasks are distributed. Other tasks and

global threads use very little CPU time. The parameter MaxCPUs allows you

to specify how many processors the database should use in parallel.

The parameter UseableCPUs allows an online adjustment of the number of

used user kernel thread. This makes dynamic configuration changes

according the available CPUs in the system possible.

As of version 7.4.03, user tasks can switch from one UKT to another if the

previously-responsible UTK is overburdened. This results in better scaling for

multiprocessor servers (SMP). To use this function, set the parameter

LoadBalancingCheckInterval to a value greater than 0.

As of version 7.8 Load Balancing is released for MaxDB and liveCache

instances and used by default. The scheduler immediately moves the task to

an idle user kernel thread if the current thread is overloaded.

15

Server tasks are primarily used to back up data. Some server tasks read

from the data volumes; others write to the backup medium.

The CREATE INDEX statement instructs the server tasks to read the table

data in parallel from the data volumes.

The system automatically calculates the number of server tasks needed in

the configuration of the database instance from the number of data volumes.

As of version 7.6 the server tasks in certain cases are named reflecting their

assigned task.

More information: Note 1672994 Server Task Configuration

16

Pager tasks are responsible for writing data from the data cache to the data

volumes. They become active when a savepoint is being executed.

The system calculates the number of pagers. It depends primarily on the data

cache size and the number of data volumes.

The timer task is used for handling all types of timeout situations (such as

session timeouts and lock request timeouts).

17

The Logwriter task is responsible for writing redo log entries in the log

volumes.

More information: Note 869267 FAQ SAP MaxDB Logging

18

Garbage collectors release undo log files to free space management. With

DROP TABLE statement, Garbage collectors delete the data in the tables

asynchronously. Users do not have to wait for all data to be deleted.

Event tasks send messages about database events to the Database

Manager (e.g. DBStudio). You can use the Event Dispatcher to define

reactions. For example, you can have the database enlarge automatically

when it gets full (auto_extend). You can also have the Event Dispatcher

automatically update statistics when certain events occur

(auto_update_statistics).

19

MaxDB offers the possibility of writing a special log, the database trace. The

active tasks write the trace data to a buffer. If requested, the trace writer

task writes the data from the buffer to the file knltrace.

The utility task is reserved exclusively for the administration of the database

instance.

Automatic log backup can be executed in parallel with other administration

tasks as it does not occupy a utility session after it is activated.

More Information about Kernel Trace: Note 837385 Database Trace (Vtrace)

20

The X-Server is the communication server of the database system. It listens

at a service port for connection requests from database applications and

database tools. In the process list, this process is called vserver. A new

vserver process is generated for every user process that logs on to the

database remotely. The generating process serves the user; the new process

waits for the next user logon. On Windows, an additional thread is started for

the user logon.

On Windows, the X-Server runs as a service.

Local user sessions communicate with the database instance via a shared

memory.

MaxDB 7.8 introduced the isolated software installation. Every database

installed for SAP application uses it’s own port number. Clients first connect

to a global listener which returns the instance specific port number. The client

then connects to the x_server assigned to the instance.

21

The DBM server is the database tool used to process administrative

commands.

The DBM server establishes the connection from the database clients (for

example, Database Manager CLI (DBMCLI), Database Studio, DBMRFC) to

the database kernel.

Only administrative commands that are started by the database tools

Database Manager CLI, Database Studio or by SAP tools via DBMRFC (for

example, DBA Planning Calendar (transaction DB13), DBA Cockpit

(transaction DBACockpit)) communicate via the DBM server.

If such commands are sent remotely to the database host, a connection is

first established via the remote SQL server (Versions >= 7.8 global listener or

Versions < 7.8 X server), which in turn starts a DBM server.

If you send an SQL statement via sql_execute/db_execute or an

administration command via db_execute to the database, these will

also communicate via a DBM server session.

More Information: Note 1694323 FAQ Remote SQL Server and DBM Server

22

23

Read and write operations to the volumes are buffered in order to save time-critical
disk accesses. The corresponding main memory structures are called caches. They
can be dimensioned according to the user profile.

The I/O buffer cache contains the last read- or write-accessed pages of the data
volumes. It is shared by all simultaneously active users.

The hit rate, that is, the ratio of successful accesses to the total number of accesses
to the I/O buffer cache, is a crucial measure of performance. It should be greater
than 98%. Successful access means that the required data was already available in
the data cache.

In addition to data pages, the I/O buffer cache also contains converter pages.
Converter pages, like data pages, are stored in the data volumes. They store the
assignment of the logical data page numbers to their physical position in the data
volumes.

The number of converter pages is calculated automatically. It can increase with data
growth. When deletions are performed, converter pages are released.

All converter pages are held in the cache. Each converter page contains 1861
entries that are managed for data pages.

The database parameter used for setting the size of the I/O buffer cache is called
CacheMemorySize.

In versions < 7.4, data pages and converter pages were managed in separate
caches, the data cache and the converter cache.

24

In the catalog cache, the database system stores user-specific data and global data from

the database catalog. Data that has been displaced from the catalog cache is moved to the

data cache. As of version 7.6 the catalog cache is a really shared cache. The information of

this cache is shared among all users. In older versions, each user task was assigned to a

separate area. The total of all catalog caches can increase up to the value that has been

configured with the database parameter CAT_CACHE_SUPPLY.

All statements to be executed will be held in the shared SQL cache along with their

execution plans. The shared SQL cache is shared by all users, that is, a statement is only

accepted once. When shared SQL is not being used, the statements of each user are kept

separately in the catalog cache. The setting NO for database parameter SHAREDSQL

deactivates use of this cache.

A statement, together with the statement text, is stored only once in the shared SQL cache.

This allows you to see which statements are active in the database at any time. The shared

SQL manager also collects monitor data. Shared SQL offers the following advantages over

versions prior to 7.6:

 A statement only has to be prepared once rather for each user.

 Statements are stored only once. That saves space in the main memory.

 Storing the data in the main memory offers better monitoring possibilities.

The log queue allows log entries to be written to the log volumes asynchronously and

increases the likelihood of group commits. In a group commit, several write transactions are

completed in the log area with an I/O.

25

The file directory is required for the internal organization of the database

instance. The assignments of the root pages of the B*-trees to the table IDs

and a type flag are stored here. The type flag specifies whether the table

contains primary data, secondary key or LONG data. With version 7.6

implementation of the file directory has changed. It now holds addtional

figures about numbers of rows and table sizes. Thus asking for the number

of rows of even extremely large tables using “SELECT COUNT(*) FROM

<table>” can be executed very fast.

The sequence cache stores current data on number generators.

26

Accesses to caches can be synchronized over one or more regions.

Depending on its size, the data cache is comprised of 8 to 64 segments of

the same size, each of which is protected by exactly one region.

If a task or thread accesses a critical section, the region locks this section for

all other tasks or processes.

Other main memory structures are also managed via synchronization

mechanisms provided by the database.

Reader-writer locks are used to synchronize the shared SQL cache. Reader-

writer locks are used in version 7.5 and up. In contrast to regions, reader-

writer locks make it possible to distinguish between shared and exclusive

locks.

More Information: Note 1681336 MaxDB Synchronization Objects

27

28

29

30

31

32

