
1

2

This is the forth SAP MaxDB Expert Session and this session covers the topic database
performance analysis.

Analyzing database performance is a complex subject. This session gives an overview
about the SAP MaxDB performance analysis tools. Further Expert Sessions in, which more
detailed information about database performance analysis will be provided, will follow.

In today’s session we show you with some examples how to execute a performance
analysis using the MaxDB tools. The usage of the SAP application performance tools like
transaction ST03 or ST03N will not be part of this session.

The presentation is based on database EXPERTDB with MaxDB version 7.7.06, which was
created during the previous Expert Sessions.

Our focus will be the usage of Database Analyzer including the Parameter Checker and the
SQL performance analysis using the SAP MaxDB Command Monitor. We will also discuss
the impact of update statistics (including the file directory counters and the eval
functionality).

3

In this chapter, you will learn how to use the database performance analysis tools Database
Analyzer, Command Monitor and Resource Monitor. You will know the importance of
update statistics.

4

The CCMS transactions DBACockpit or DB50 are used for MaxDB database performance
analysis. If you want to analyse a remote database from your SAP system you must use
transaction DB59 to integrate that remote database, before you can use transaction DB50
for the analysis.

Starting with the Database Assistant (transaction DB50) you can use the MaxDB
performance analysis tools Database Analyzer, Command Monitor and Resource Monitor .

Only the Database Analyzer parameter check function cannot be executed directly in the
SAP system using transaction DB50. You need to run this tool on the command line of the
operating system.

5

When you start a performance analysis you should first have a short look at the Properties
of your system. Here you can check when the database was restarted.

To carry out a global performance analysis, the system needs to be balanced. It doesn’t
make sense to perform a performance analysis directly after the database was restarted
and all data still needs to be read from the hard disks.
During the restart of an OLTP or BW database data pages are not loaded into the IO Buffer
Cache implicitly like in a liveCache environment.

On the properties screen you get also the information if there exist any corrupted indexes in
your database. Those indexes are blocked (we call it marked as bad). They cannot be used
anymore by the optimizer. This can be one reason for bad response times of individual
transactions which appear without changing anything in the system.

In this overview you will also find the information if the command and resource monitor
tools are active.

6

As bad performance could be caused by wrong parameter settings, you should check the
database configuration first.

SAP MaxDB offers a check tool for MaxDB kernel parameter settings. This check is
embedded into the Database Analyzer. The parameter check tool is used to check whether
the configuration of your liveCache, MaxDB, OneDB or BW system corresponds to the
current SAP recommendations.
In general the parameter recommendations which are described in the MaxDB parameter
notes (MaxDB Version 7.7: 1004886, MaxDB Version 7.8: 1308217) are checked.

The parameter check should be executed after each upgrade to a new liveCache/MaxDB
version. Different recommendations may be relevant for different database versions.

The parameter check tool uses a special Database Analyzer configuration file. This special
configuration file is attached to note 1111426. As this file is regulary updated, you must
download it again before each check. This file can be stored in a temporary directory – e.g.
/tmp

Use sapcar –xvf DbanalyzerParamCheck.sar to extract the configuration file
dbanalyzer_instanceParameterCheck.cfg

Do not replace the original database analyzer config file with the new one!

7

The database instance must be in operational state ONLINE when you start the parameter
check tool. Perform the automatic check as SYSDBA user (e.g. dbadmin)
dbanalyzer –d EXPERTDB –u dbadmin,secret –f
c:\tmp\dbanalyzer_instanceParametercheck.cfg -o c:\tmp\param_check -i –c 1 –t 1,1 –n
<server>
-i the output directory will be cleaned up
-c output will be send to screen as well
-t only 1 snapshot in an interval of one second

Analyze the screen output or the file /tmp/param_check/<YYYYMMDD>/DBAN.prt.
Important are all messages that are marked with “* W1 to * W3”
The following checks are executed:
- general parameters
- parameters which influence the I/O performance
- optimizer parameters
- special liveCache parameters
- additional checks

- do corrupt indexes exist?
- is the database kernel trace activated?
- do tables exist which do not have any file directory counters?
- is logging activated and autooverwrite deactivated?
- does the size of the IO Buffer Cache correspond to the SAP recommendation,

which is
2% of the configured volume size for UNICODE systems and
1% for NON-UNICODE systems?

8

If there are parameter settings which differ from the recommendation you can use
Database Studio, DBMCLI or transaction DB50 to change the parameter setting.

Change the parameter setting of Parameter UseSharedSQL from NO to YES, because this
parameter is important for monitoring the system using the Resource Monitor.
Also change the parameter IndexlistsMergeThreshold to the recommended value 0.

A restart of the database is only necessary if the parameter is not online changeable.

9

With Search and Display you can list the parameters you want to change. Choose Switch
to Change Mode to be able to change the parameter value.
With Save and Activate the parameter will be changed online and the new value will be
stored in the parameter file. So the new value will be active after the restart of the database
as well. If you use Activate Temporarily the parameter will be changed online but the new
value will not be stored in the parameter file. The parameter change will be lost after a
restart of the database.

Adapt all parameters in this way, which have been logged by the parameter checker.

10

The database analysis tools need to have detailed information about the runtime several
activities need - e.g. how long does an I/O to/from disk take or how long are wait times.

To get detailed information about used time the database internal time measurement has to
be activated explicitly by using the Task Manager in transaction DB50. To do this go to
Current Status –> Kernel Threads –> Task Manager and choose Activate DBTime
Measurement.

It is recommended to switch on the time measurement only during a performance analysis
and not by default. When the database is restarted, the time measurement is switched off
implicitely. It can also be deactivated explicitely in transaction DB50 Current Status –>
Kernel Threads –> Task Manager -> Deactivate DB Time Measurement.

As of MaxDB Version 7.7. the I/O time measurement is always active. The time
measurement for Wait (suspend) situations and for command runtime which should be
checked via the Database Analyzer tool (receive/reply times) has still to be activated
explicitly (using the same button as described before).

You can activate the time measurement as well using DBMCLI :
db_cons time enable

11

When you notice bad response times of your SAP system and you suspect that the
problem is caused by the database use the Database Analyzer to get closer to the reason
for the performance problem. The Database Analyzer is completely integrated into
transaction DB50: Problem Analysis –> Performance –> Database Analyzer -> Bottlenecks.

The Database Analyzer is a tool for long-term analysis. It is automatically started when you
start your SAP System and it should always be active on productive systems.
If you want to see the current status of Database Analyzer in transaction DB50, choose
Determine Status in the Database Analyzer menu.

In the dbanalyzer<version>.cfg configuration file, SAP defines rules and commands which
are used by Database Analyzer when determining performance-relevant information.

The Database Analyzer config file is version specific and part of the independent software.
The Database Analyzer obtains the performance relevant information either directly from
system tables in the database, or calculates it from the data in those tables.

The configuration file also describes the four classes of messages. Information marked with
an I or INFO and three levels of warnings: W1 to W3 - warning levels 1 to 3 with low,
medium and high priority.

All messages are logged in the DBAN.prt log file.

12

If problems with the Database Analyzer program occur, the system writes messages to the
following log files:
DBAN.err: Error file
DBAN.inf: Runtime information of the Database Analyzer that was most recently started.

The default interval in which the Database Analyzer is collecting the data is 900 seconds (=
15 minutes). When you are planning to do a detailed performance analysis it is
recommended to change that interval. To do so you need to stop and restart the Database
Analyzer using the buttons Stop Analysis and Start Analysis .

When you start the Database Analyzer you can choose the new interval – it is
recommended to use 60 seconds during a short term analysis.
In the first interval after starting the Database Analyzer and at the beginning of each day
the Database Analyzer logs some general system information:

- version information about the Database Analyzer configuration file
- hardware information
- database configuration information
- information about required statistics update

The Database Analyzer logs all information and warnings in log files in directory analyzer,
which is a subdirectory of the run directory of the database. For each day the Database
Analyzer is running a new subdirectory with the current date is created. This makes it easy
to analyze and compare the Database Analyzer data of different days.

13

Notice: not every message which is marked as red is a critical one. It depends on the
workload (number of SQL-Statements) of the database if a message should be checked in
detail.

In this example we can see several messages:

Message: High : Data cache hitrate (SQL Pages) 93.76%, 3676 of 58871 accesses failed
Explanation: The hit rate when accessing the data cache is too low. Data cache hit rates
that are lower than 99% over a fifteen-minute average should be avoided. Lower hit rates
may occur for short periods of time, for example, when objects are accessed for the first
time. Low hit rate for longer periods of time indicate a performance problem which has to
be analyzed in detail.
Next Steps: Check the configuration of the database instance: Kernel parameter
CacheMemorySize should be >= 1% of the total data volume size.
However, increasing the Data Cache size is often not the best solution, if individual SQL
statements cause a high percentage of the total logical and physical read activity.
Increasing the cache just moves the load from the hard disk to the CPU, even though, for
example, an additional index could turn a read-intensive table scan into a quick direct
access.

14

Message: Medium : Avg user cmd exec time for task 64: 21860,03 ms, 1 commands,
application pid 4976
Explanation: The time needed by the specified user task to execute the statements is
very long. You see the average execution time of a statement, the number of executed
statements, and the process ID of the corresponding application process.
Next Steps: Whether this counts as a bottleneck depends on the application structure.

Mass statements in background processes can often cause long runtimes. Additionally,
locks on SQL objects, physical reads and writes, or dispatching caused by the
prioritization of other tasks, can cause internal kernel wait situations that increase runtimes.

We see a lot of physical reads as well in this example. So we will focus on that to find the
reason for the Database Analyzer messages.

15

Message: low: 3463 physical reads for user task 64, avg read time 5.84 (5.8) ms, 23
commands, application pid 4996
Explanation: A large number of physical reads are taking place on the volumes of the
database as the data requested by the applications was not found in the data cache.
If a table is accessed for the first time, or if it has not been used for a long time, and was
therefore displaced from the data cache, then this situation is not a problem.

However, if this does not explain the read activity, you should check the hit rate for the data
cache, and increase the size of the data cache, if necessary.

Furthermore make sure that the SQL statements specified by the application do not read
significantly more data than is necessary for processing, because of poor search strategies,
for example.

If the special database parameter UseDataCacheScanOptimization has the value NO, then
table scans use only 10% of the data cache for caching the table. This means that the table
cannot be held completely in the data cache, and the next scan has to read it from the
disks again. If the parameter is set to YES, the complete cache can be used for scans.

In the database analyzer manual you will find a lot more information about the
Database Analyzer messages.

16

Let’s have a short look into the Database Analyzer Expert Analysis.
The expert analysis provides access to all available database analyzer log files. You can
get detailed information about the database activities and used resources.

Expert Analysis is used by MaxDB Experts in Development Support to analyze complex
database performance problems.

Let’s have a short look into two of these files: LOAD and CACHES

17

We will check the log file DBAN_LOAD.csv (LOAD) .

Here you can get an overview of the SQL activities on your database.

You get information about accesses and selectivity of SELECT, FETCH, INSERT, UPDATE,
and DELETE statements.

In our EXPERTDB we do not have any Inserts, Updates and deletes.
The activities are caused by Select commands.
We get detailed information about:
- the number of selects and fetches (410),
- the number of rows read for those selects and fetches (436529)
- the number of rows qualified of those number of rows read (347299) -> nearly 90.000 less

Why we need to read so much more data than needed for the result?

Continue the performance analysis on SQL command level using the tool Command
Monitor.

18

Remember: We also got a message about very bad Data Cache hit rate.

You get more information about the details of the caches with a closer look into file
DBAN_CACHES.csv (CACHES). Successful and unsuccessful accesses to the MaxDB
caches, and also hit rates are listed here.
What you should know about the several caches is that the data cache (DC) is the most
important cache listed here. All application data (tables/indexes) which is processed must
be located in the DC. If the pages are not available in the DC the data is read from the disk
which causes physical I/O.

You don’t need to focus on the catalog cache. The catalog cache is used for meta data of
tables, indexes and SQL commands, e.g. access plans.

When you access the MaxDB catalog information e.g. the system tables this information is
stored in the catalog cache as well.
When the command monitor is switched on all executed SQL commands will be parsed
again. The Catalog Cache hitrate decreases.
Or if you are working with transaction DB50 – doing a lot of catalog scans caused by
system table accesses - the catalog cache rate decreases.
This should not have a negative impact to your system performance.
We focus on the data Cache hitrate (DC_HIT). A database which is running fine should
have a data cache hitrate of more than 98%.

We see here in the EXPERTDB that the data cache hitrate is bad (93%) from time to time.

19

Use the Command Monitor if the analysis of the database bottlenecks (Database Analyzer)
reports inefficient database accesses. With this tool, you can identify long running SQL
statements in a systematic way.

The tool should be used for short-term analysis since the number of SQL statements
logged is limited. You can restrict the number of SQL statements logged by specifying
logging criteria. This enables you to concentrate on long-running SQL statements.

Enter the desired recording criteria in the Change Monitor Settings display. The recording
criteria determine which SQL statements are to be logged in the command monitor tables.
If one of the set criteria is full filled the SQL statement is logged in the command monitor.

Number of Page Accesses: A SQL statement is logged if the number of specified page
accesses is exceeded.
SQL Statement Runtime: A SQL statement is logged if the specified runtime is exceeded.
Selectivity: A SQL statement is logged in the command monitor tables if the ratio of
qualified records to read records falls below the specified percentage.

SAP provides default values for these thresholds. Use Apply SAP default settings and then
adapt or confirm these values.

In our Expert Session we will use only the runtime with >= 100 ms.

20

After the command monitor has been switched on all SQL statements which are newly
executed and which violate one of the thresholds are logged in the monitoring tables (up to
max. 3000 statements).

The list of SQL statements is sorted by the runtime (default). Statements with the longest
runtime are on top.

We start the analysis with those commands which take the longest runtime (in msec). In
our example this is a SELECT statement on table HOTEL.BKPF.
This select took more than 38 seconds, accessed more than 20.000 pages and more than
100.000 records were read but only 234 were qualified for the result. This explains the
Database Analyzer information about bad selectivity.
The next thing we need to check is, why the database needs to read so many records to
get the result - maybe there is an index missing.

With a double click on the SQL statement we get detail information about this statement.

21

The complete SQL Statement is displayed.

Display Execution Plan for an SQL Statement
You use this functionality to see which strategy the MaxDB Optimizer uses to select the
data. The Execution Plan (EXPLAIN) is listed.

Display/Trace Execution Plan for an SQL Statement
The SAP Support might ask you to create this SQL Optimizer trace. This trace is used by
the support to analyze why the MaxDB Optimizer chooses the strategy displayed in the
Execution Plan.

Display Call in ABAP Program
If a logged SQL statement was called from an ABAP program, you can trace the SQL
statement back to that program. To do this choose Display Call in ABAP Program (only
available for the database instance that is the basis of the current SAP Web AS system).

In this example there are 4 columns in the SELECT list - the order of those columns is NOT
important for the MaxDB Optimizer strategy search.
Remember: it is better to use only those columns in the SELECT list which are really
needed than to use the * for all columns of a table.

During a SQL analysis focus on the WHERE condition of the SQL Statement. In this
example only those rows are requested for which the conditions MONAT = ’01’ and BLART
= ‘RV’ and one of the 3 different OR terms for WWERT apply.

22

The execution plan of this SQL statement shows that the optimizer is using a Table Scan to
select the relevant data.

If table BKPF is a very large one this may be an expensive access. Check in the next step
why no index is used.

To get more information about existing indexes for this table choose back.

23

In this screen choose Table/View information.
Automatically the relevant table is inserted into the selection screen.
After confirming the table name you get detailed information about table BKPF.

Alternatively you could display the same table information by choosing Problem Analysis –>
Tables/Views/Synonyms in transaction DB50.

24

You can choose from the following displays:
Properties: Information about table type, access rights, creation and alter date, default
sample size for the update of optimizer statistics (only for tables), and cost savings caused
by clustering of tables (only for tables) is displayed. Additionally you can check the
database structure of the selected table.

25

Definition: The definition of the object in the database instance is displayed (this is not the
object definition from the ABAP Dictionary but the object definition according to the system
tables of the database system).
For our example analysis we check in the definition if our table has a primary key and
which columns belong to the primary key: table BKPF does not have a primary key.

26

Next the Indexes are checked.
Indexes: Display of all indexes (including inactive, unused, bad indexes) which are defined
for this object. Among other things, you can activate or deactivate indexes, restore a
corrupted index or reset the usage counter.

The WHERE condition of our SQL command is as follows:
where (WWERT = <value> or <value> or <value>) AND MONAT = <value> AND BLART = <value>

Check all listed indexes if they could be used to execute the analyzed SQL statement.
None of the available indexes contains the columns of the WHERE condition. That means,
the optimizer can only access the data via a table scan.

A new index should be created to optimize the access.
The order of the columns in the WHERE condition is not relevant for the column order in
the index.
Important is the number of different values in a column to reduce the number of rows which
has to be read to get the result. And important is the kind of qualification for each column.

The next step is to check the Optimizer Statistics of table BKPF to get the information
about the distinct values of the qualified columns.

27

If there are no statistics available for the columns WWERT, MONAT and BLART, you can
start an update statistics column using tool Database Studio.

The statistics could also be updated in the table application on tab Optimizer Statistics.

28

The distinct values of the columns and the qualification type in the WHERE condition are
both relevant to find the best index structure.

Remember that the values of an index are sorted by the indexed columns.

The fasted access can be reached when the number of rows which have to be read is
minimized. The distinct values give a hint which column should be the first one of the index:
you should choose the column which has the most different values (distinct values).

This is column WWERT, but in the WHERE condition 3 different values of WWERT are
selected.

Using column WWERT as the first index column would result in reading more data to find
the result as if another column is used as the first index column, which is selected with an
equal condition on one value.

There are two other where conditions in the statement with an equal condition (one value
each): on columns BLART and MONAT.

BLART has more distinct values so the first index field should be BLART, the second
MONAT and the last WWERT.

29

To optimize the statement create an additional index on table BKPF containing the columns
(BLART,MONAT,WWERT). Make sure to use exactly this column order!

In an SAP Environment you should use transaction SE11/SE14 and the transport system to
create an index in a test environment first and transport the new index to your productive
system. Use the customer name space for non SAP standard indexes.

For test issues and in our demo Database Studio can be used to create indexes.

Important to know: Up to MaxDB version 7.6 the table is locked for change operations while
the index is created. Be careful when you create new indexes on large tables, as this might
take a long time. This should only be done during times of low workload.

With MaxDB Version 7.7 a non blocking create index has been implemented.
If the transaction which is creating the index does not hold any locks on the table the table
won’t be locked for changes during index creation. All changes on that table during index
creation are logged separately. At the end of the index creation only a short write lock on
the table is set to redo these changes in the index.
Attention: if a unique index is created, the table is still exclusively locked while the index is
created!

30

After the index is created, open the command monitor and display the execution plan
again. The execution plan is not stored with the monitoring data, but re-calculated. So the
new index is taken into account by the optimizer for creating this execution plan.

As you can see, the new index is used. The calculated costs are lower than before: only
219 data pages have to be read during statement execution – compare this to the old value
4148. The costs have been reduced from 4148 to 14.

31

When the report is executed again, you will see that the runtime is shorter than before
without the index.

The statement execution now takes only 531 msec.

32

There is another SQL statement logged in the Command Monitor which should be
analyzed: the SELECT statement on HOTEL.VBKPF with a total runtime of 293 seconds.
You can see a lot of page accesses and although the ratio between rows read and rows
qualified and therefore the selectivity is not that bad, this statement should be analyzed in
more detail.

Background information: when a join statement is executed, all rows which are qualified in
the first table are counted as ‘qualified’ although some of them might be excluded from the
final result during one of the next join steps.

Start the analysis with detail information about the SQL statement by double-clicking the
statement.

33

The execution plan shows that two tables are involved. View VBKPF contains two tables
called T1 and T2. The Optimizer starts with selecting data on table T2 using index
BKPF_1~6 and joins the results to table T1 using the index BKEX~3.

The cost value does not look bad with value 3. However, the displayed page count does not
fit to the number of page accesses logged in the monitor.
It is also suspicious that this statement run for more than 290 seconds although only one
page is supposed to be read for each table.

Something seems to be wrong here!

In the next step the view details have to be checked – either accessed from the SQL
statement screen or in application Tables/Views/Synonyms.

34

The procedure to analyze a view access is nearly the same as the procedure to analyze an
SQL statement on a single table.

35

Having a closer look at the join definition is very important when a join select has to be
analyzed. You can see that table HOTEL.BKEX (T1) and HOTEL.BKPF_1 (T2) are used in
the view.

The following columns of table HOTEL.BKEX are selected:
MANDT, BELNR ,GJAHR and BLART
The following columns of table HOTEL.BKPF_1 are selected:
TCODE, BLDAT and BUKRS

Both tables are joined via the following columns (join condition):
T1.MANDT = T2.MANDT
T1.BUKRS = T2.BUKRS
T1.BSTAT = T2.BSTAT
T1.BUDAT = T2.BUDAT

The view selects only rows which belong to MANDT = ‘800’ (local predicate).

Check the explain plan: The optimizer starts with table BKPF_1 and joins the result with
table BKEX.

Remember: so far it cannot be explained why the execution plan shows that only one page
of each table has to be read to get the result. The Command Monitor shows that 98.000
pages were accessed!
The optimizer uses column statistics to find the best strategy for join selects – and the
execution plan is also based on statistic values. Therefore the optimizer statistics should be
checked. This can be done using either button Optimizer Related Information or using the
Optimizer Statistics tab.

36

The optimizer needs statistics about the size of the tables and indexes and the cardinality
of the different columns to determine the ideal access strategy for join statements.

The Total Number of different Values is displayed as 0.
The Total Number of Pages is 1. This represents the currently available statistic
information.

As of MaxDB version 7.6 the exact number of table records is available additionally to the
table statistics. The number of records is updated after each delete and insert.

The Exact Total Number of Values and Exact Total Number of Pages differ from the
displayed statistic information. This indicates that the statistic data is outdated. But the
optimizer needs accurate statistic values to determine the best access strategy for join
selects. Therefore the optimizer statistics should be updated!

Nice to know: For single table accesses those column statistics are irrelevant because the
optimizer uses the evaluation feature during strategy search to get information about the
cardinality of columns.

To avoid problems which are caused by missing or outdated optimizer statistics, update the
SQL optimizer statistics regularly. Do a performance analysis of individual SQL statements
(particularly join statements) only when the statistics are up-to-date. Schedule regular
updates of the SQL optimizer statistics in the DBA Planning Calendar. Ensure that the
scheduling has been successfully executed and thus that the SQL Optimizer statistics are
current.

37

The columns which are used in the join condition are important when analyzing if the best
strategy is used for the join transition.

T1.MANDT = T2.MANDT
T1.BUKRS = T2.BUKRS
T1.BSTAT = T2.BSTAT
T1.BUDAT = T2.BUDAT

Check the existing primary key and indexes if they can be used for the join transition.

The execution plan displays that index BKEX~3 is used for the join transition. It has to be
checked, why the optimizer does not use index BKEX~2, which reflects exactly the join
condition. This might also be caused by the outdated statistics.

38

Table BKPF_1 and table BKEX are used in view VBKPF. Therefore new optimizer statistics
have to be created for both tables.

Important for finding the best access strategy for a join statement are the column statistics.
You don’t need to create those statistics with a special update statistics column command.
During the statistics update for the table the column statistics (of indexed columns) are
updated implicitly. The statistics for the indexes are automatically created as well.

39

When the execution plan is displayed again, you can see that the strategy has changed.
The optimizer still starts the access with index BKPF_1~6 but the join to the second table
BKEX is now done via index BKEX~2.

Now the displayed costs are higher than before but the lower costs of the old execution
plan were based on wrong optimizer statistics.

To check the current runtime of this command the report can be executed again.

40

The runtime of the SELECT statement on join view VBKPF decreased to 344 msec.

41

You can use the Resource Monitor to get an overview of the SQL statements which used
the most resources in a specified period. To access the Resource Monitor, choose menu
Problem Analysis -> SQL Performance -> Resource Monitor in transaction DB50.

The status of the Resource Monitor is displayed in the Current Monitor Status area and can
be refreshed using Refresh Monitor Status .

As of MaxDB Version 7.8. the Resource Monitor is always active.
In older database versions the Resource Monitor has to be activated manually if needed for
an analysis.

To start or stop the Resource Monitor, choose Start Recording respectively Stop Recording.

Choose Initialize Monitor Tables to delete all logged SQL statements from the monitoring
tables.

In contrast to the Command Monitor the Resource Monitor logs all executed SQL
statements – not only statements which violate specific thresholds.

In the Output Criteria area you can specify filters to reduce the number of displayed
statements.

42

The runtime data is aggregated for all executions of the same SQL statement. This way
you get an overview, which statement is most expensive – not necessarily a single
execution of the statement but the sum of all executions.
In contrast to the Command Monitor the parameter values of the single statement
executions are not recorded in the Resource Monitor.

As a default the output list is sorted by the Total Runtime.

Statements which should be analyzed are statements:

- with a high total runtime

- with a very high number of executions

- with a bad selectivity

Statements with a high total runtime are the most expensive ones. This can have different
reasons: either each single execution was fast but the statement was executed very often
or even a single execution took a long time.

For statements which are executed very often, the application needs to be analyzed. It has
to be checked if it is really necessary to execute the same statement over and over again.
Furthermore it should be checked, if only the required columns are selected and if the
WHERE condition is sufficient. It doesn’t make sense to select more data than necessary
and filter it afterwards by the application.

Statements with a bad selectivity need to be analyzed in the same way as shown in the
Command Monitor example.

43

44

45

46

