
 1

 2

 3

 4

 5

The MaxDB kernel consists of three levels:

SQL statements sent to the database system are received by the highest level, the SQL Manager (previously

known as the application communication layer).

They are then sent in compressed form to the Data Access Manager. The Data Access Manager is divided into the

communication base layer (KB) and the base data (BD) layer.

The necessary individual queries are determined on the communication base layer.

The required data is then procured on the lower-level base data layer.

The data records are then sent through the layers to the querying application.

In recent years, the KB and BD layers have increasingly merged.

Since version 7.4 there has no longer been a sharp division between the two layers.

 6

Let's have a look at a relatively simple SELECT statement:

The SQL Manager receives an SQL statement that was sent as an SQL packet and first checks the syntax for

correctness.

It converts the incoming SQL packets into stack code with various entries, each with a length of 8 bytes.

Catalog management, that is, the determination of information about the existing tables and their columns, also

takes place on this layer.

Finally, the Optimizer in the SQL Manager decides if the data should be accessed via a secondary index.

In our simple example, we assume that the Optimizer has opted for an access strategy via the secondary index

kna1_1 .

 7

Transaction management and lock management are executed on the communication base layer of the Data

Access Manager.

Transaction management manages information about active transactions in the database as well as the changes

they make to data.

Lock management provides memory lists containing all objects of an instance that are locked at a certain point in

time as well the transactions that correspond to them.

In the case of complex SQL statements (such as joins), access to individual tables and indexes is coordinated.

In our simple example, the KB layer will first access the index table kna1_1 and then, using the determined index

entries, directly access the appropriate rows of table kna1.

 8

The base data layer of the Data Access Manager executes accesses to data that is either still located in the data

volumes or is already in the cache.

The BD layer returns the results records to the KB layer.

 9

A database instance consists of the following three parts:

Database kernel (process level)

Caches (memory level)

Volumes (hard disk level)

 10

A user kernel thread forms a subset of all tasks (internal tasking).

The database kernel runs as one process divided into threads. Threads can be active in parallel on several

processors within the operating system. Threads perform various tasks.

User kernel threads (UKT) consist of several tasks that perform various tasks. This tasking enables more efficient

coordination of tasks than operating system tasking that employs individual threads.

The runtime environment (RTE) defines the structure of the process and the user kernel thread.

 11

When the runtime environment is started, that is, when the database instance is started in the Admin state, first the

coordinator thread is generated. This thread is of particular importance.

Â When started, the coordinator thread uses database parameters to determine the configuration of the memory

and process of the database instance. For this reason, changes to database parameters take effect only after

you have restarted the database instance.

Â The coordinator thread also coordinates the start procedures of the other threads and monitors them while the

database instance is in operation.

Â If operating errors occur, the coordinator thread can stop other threads.

The requestor thread receives logon requests from the user processes to the database. The logon is assigned to

a task within the user kernel thread.

The console thread collects information about the internal states of the database kernel when x_cons is being

used.

The clock thread and the timer thread calculate internal times, for example to determine how much time was

required to execute an SQL statement.

 12

I/O threads are responsible for processing the write and read requests to and from data and log volumes that are

requested by the corresponding tasks. MaxDB supports asynchronous I/O requests. On Windows, the

asynchronous I/O of the operating system is used.

Until version 7.6 the number of I/O threads is primarily dependent on the number of volumes in the database

instance. As a rule, two I/O threads are activated for each data and log volume and one for the writing of the

database trace. When using the asynchronous I/O of the operating system, only one I/O thread is started in each

case as the I/O calls of the operating system are used.

As of version 7.7 I/Oworker threads are taken from a pool and activated on request; I/O is done asynchroneously.

After finishing the I/O requests the workers are returned to the pool.

If the asynchronous I/O calls of the operating system are being used, the user kernel threads send their requests

directly to the operating system. The reply from the operating system is put in a queue. The queue is read by the

I/Oworker threads.

Threads are also temporarily activated to read and write data for data backups. These threads are called

asdev<i>. Their number depends on the number of data volumes and of the number of backup devices.

 13

Each user session is assigned exactly one user task at logon.

The maximum number of available user tasks is determined by the the database parameter MaxUserTasks. This

parameter also restricts the number of user sessions that can be logged on to the database system

simultaneously.

The database parameter MaxTaskStackSize determines the memory usage of the user tasks.

The general database parameter MaxCPUs specifies the number of user kernel threads among which the user

tasks are distributed. Other tasks and global threads use very little CPU time. The parameter MaxCPUs allows you

to specify how many processors the database should use in parallel.

As of version 7.4.03, user tasks can switch from one UKT to another if the previously-responsible UTK is

overburdened. This results in better scaling for multiprocessor servers (SMP). To use this function, set the

parameter LoadBalancingCheckLevel to a value greater than 0.

