
1

Heike Gursch
Werner Thesing

MaxDB
No-Reorganization Principle
Data Storage Without I/O Bottlenecks

Release 7.6

2

© SAP 2007 / MaxDB Internals – B*Trees and No-Reorg Method/ Page 2

Overview

No-reorganization principle

B* trees

Shadow page algorithm

3

© SAP 2007 / MaxDB Internals – B*Trees and No-Reorg Method/ Page 3

Preconditions for no Reorganization

Space that is no longer used must be available for the database immediately.

The degree of usage of the data blocks must maintained at a consistently high level.

The data storage within the data blocks must be compact; no gaps are allowed.

This slide describes the paradigms of a database system that is reorganization free.

As MaxDB does not need to be reorganized, the database can be operated with minimal
administrative outlays.

The absence of the need to reorganize also means that the database always works with
optimal access structures. That means consistently good performance.

4

© SAP 2007 / MaxDB Internals – B*Trees and No-Reorg Method/ Page 4

No-Reorganization Principle (1)

No-reorganization
update in place
sort by insertion
delete in place

Storage of data in B* trees
Tables and indexes
Data of type BLOB (ex Long)

To achieve an efficient I/O strategy while maintaining the no-reorganization principle of the
database system, a framework of structural and functional prerequisites was developed for
MaxDB. These include, on the one hand, the no-reorganization principle itself, which is the
result of separate memory management for the secondary storage media and the logical
data pages and is primarily based on the following functions:

Sorting of data records when they are inserted,
Changing of data records in place,
Changing of data records in place,

On the other hand, there are the logical storage structures and terms. We will take a closer
look at:

B* Trees,
Tables and inversions,
Primary and secondary keys
and the storage of BLOB data (BLOBs)

5

© SAP 2007 / MaxDB Internals – B*Trees and No-Reorg Method/ Page 5

No-Reorganization Principle (2)

Update Statistics
Is no reorganization
NOT executed:
– 'garbage collection‘
– structural changes
Solely optimizer statistics are refreshed
Maintenance of statistics is accelerated by sampling and done conflict-free

For systems with cost-based query optimization, it is important to work with current table
and column statistics. Only under this condition can the optimizer find the best possible
paths for qualification handling. This step is often mistakenly viewed as reorganization;
however, no data is moved and no memory is recovered. It serves only to update
statistics.

In general, the maintenance of statistics proceeds fast and conflict-free for the user. The
user merely has to start maintenance and set the desired precision of the statistics.
Now for a closer look at the terms:

Fast means:
the statistics are determined by sampling using some subsets of the table,
Conflict-free means:
parallel operation may not be compromised by locks (at least of a long duration) during
determination of the statistics.

In the standard, the sampling rate for Update Statistics is 20,000 records. The column
SAMPLE_ROWS of the system view DOMAIN.TABLES displays the default value. You
can set the value with the SQL command "ALTER TABLE <tablename> SAMPLE
<value> ROWS".

6

© SAP 2007 / MaxDB Internals – B*Trees and No-Reorg Method/ Page 6

No-Reorganization Principle (3)

Storage concept
concept of B* trees
access to data
execution of an INSERT
execution of a DELETE
execution of an UPDATE
B* tree balancing
striping

The MaxDB storage concept ensures that data is quickly stored and found on the
available disks. It is the key to automatic load balancing by MaxDB and thus guarantees
the no-reorganization principle of the database system.

7

© SAP 2007 / MaxDB Internals – B*Trees and No-Reorg Method/ Page 7

Level 0 (Leaf Level)

Level 1 (Index Level)

Level 2 (Root Level)

B* Tree Concept

In MaxDB, data is stored in B* tree structures.

The smallest storage unit is the page. In MaxDB, the size of a page is 7.5/8 KB.

A B* tree is created for each table and secondary index.

A B* tree reaches from the highest level, the root level, to the lowest, the leaf level. The
data is always on the leaf level.

The primary index of the tables serves as a sorting criterion for the setup of the tree
structure.

It can be demonstrated that a B* tree procedure generally requires fewer accesses to
find single records than other access methods.

8

© SAP 2007 / MaxDB Internals – B*Trees and No-Reorg Method/ Page 8

Level 0 (Leaf Level)

Level 1 (Index Level)

Level 2 (Root Level)

Baf .. Waf

An Au Az Baf .. Bi Waf .. Zu

Aalen .. Amiens Aneby .. Athens Auber .. Avon

Structure of a B* Tree

The entries in the data pages are comprised of two parts:
The fist part is comprised by the contents of the key fields of a table row. We shall refer to this as the separator.
The second part is comprised by the remaining data.

On index pages, every separator is followed by a logical address that refers to a page on a lower index
level or on the leaf level. The number of entries that fits on an index page depends on the length of the
separators.

A node of the B* tree always comprises one page. Thus the number of entries per B* tree level depends
on the length of the separators.

In addition to the separator, leaf pages contain the contents of the other columns of the respective table
row. The number of entries that fits on an index page depends on the length of the separators.

The amount of memory required for a table depends on the length of the key fields and the total length of
a table row.

The procedure described here is supplemented by special treatment of tables that contain 'BLOB’
columns (Binary Large Objects). Additional auxiliary trees are created for the purpose of accepting the
contents of BLOB columns, which can be many times longer than a data page.

9

© SAP 2007 / MaxDB Internals – B*Trees and No-Reorg Method/ Page 9

Level 0 (Leaf Level)

Level 1 (Index Level)

Level 2 (Root Level)

Baf .. Waf

An Au Az Baf .. Bi Waf .. Zu

Aalen .. Amiens Aneby .. Athens Auber .. Avon

Athens < Baf
Goto Address

0x...

Athens < Baf
Goto Address

0x...

Access to Data (1)

SELECT FROM address
WHERE city ='Athens'
SELECT FROM address
WHERE city ='Athens'

The B* tree procedure makes it possible to find data quickly.

Here's an example of how a data record is found: looking in an address table with the
primary index 'city', you want to find an entry for ‘Athens’.

The search begins on the root level. The comparisons described in the following take
place on a character by character basis.

The database system checks if the value 'Athens' is smaller than the second entry on
the root page, 'Baf'.

As the value is smaller, the corresponding logical address information from the first
branch is evaluated. It points to a page on the next level (index level).

10

© SAP 2007 / MaxDB Internals – B*Trees and No-Reorg Method/ Page 10

Level 0 (Leaf Level)

Level 1 (Index Level)

Level 2 (Root Level)

Baf .. Waf

An Au Az Baf .. Bi Waf .. Zu

Aalen .. Amiens Aneby .. Athens Auber .. Avon

SELECT FROM address
WHERE city ='Athens'
SELECT FROM address
WHERE city ='Athens'

Athens < Au
Goto Address 0x...

Athens < Au
Goto Address 0x...

Access to Data (2)

The comparison then continues on the index level. Now the desired value, 'Athens', is
smaller than the entry 'Au' on the data page.

So the ‘An’ branch is evaluated.

The pointer points to the second page on the leaf level. Now we are on the leaf level
(level 0).

11

© SAP 2007 / MaxDB Internals – B*Trees and No-Reorg Method/ Page 11

Example Root Level

Start position
of separator

Page number on
next level

Truncated
primary key value

We‘ll follow this page
number ...

This page shows a root page as displayed by the MaxDB Tool x_diagnose.

At the top you see the page header. As the page number and root number on this page
are the same, this is a root page. The B* tree has three levels (levels 0 – 2). This page
has 18 entries. It was changed 36 times.

The separators are shown in their alphanumeric order. You see the respective start
position, the page number on the next page to the separator, the length and the value of
the separator.

12

© SAP 2007 / MaxDB Internals – B*Trees and No-Reorg Method/ Page 12

Example Index Level

Start position
of separator

Page number
on the next level

Truncated
primary key value

We want to follow this
page number...

This page is an index page of level 1. The separators refer to pages of the leaf level.

The header contains the known root page. It is checked with each access.

The page has 103 entries, sorted.

13

© SAP 2007 / MaxDB Internals – B*Trees and No-Reorg Method/ Page 13

Example Leaf Level I

Start position
of the record

Primary key length Primary key value

In this example the diagnosis tool displays only the primary key values.

This page has 61 entries. The last record ends at position 7385.

14

© SAP 2007 / MaxDB Internals – B*Trees and No-Reorg Method/ Page 14

Example Leaf Level II

This graphic shows the first 100 bytes of the first record of page 558817.

Each record begins with a header. This contains the length of the record, the length of the
primary key value, the relative start position of the first variable-length value (e.g.
VARCHAR) and the number of variable-length fields.

On this page the record begins on page 81. The primary key begins within the record at
position 10.

15

© SAP 2007 / MaxDB Internals – B*Trees and No-Reorg Method/ Page 15

Position List
(sorted)

Aneby |.....

Ardwick|.... Arbon |.......

Apach |. Apensen|.....

191206169143111

em |...

Arnh-

Data Entries
(unsorted)

Aneby |.....

Apach |.

Apensen|.....

Arbon |.......

Ardwick|........

Arnhem |...

Athens |........

Athens |.......

Contents of a Data Page

Aneby .. Athens

217 81

The data records are located unsorted in the start area of the target page.

In the end area of the data page, there is a position list that refers to the individual
records of the data page. This address list is arranged so that in the case of sequential
access via the position list, the data entries can be read sorted.

The database system searches the remaining entries and ultimately returns the
requested table row.

The position list and the data record entries start at opposite corners of the page and
grow towards each other.

16

© SAP 2007 / MaxDB Internals – B*Trees and No-Reorg Method/ Page 16

INSERT INTO address (name) values ('Arbon‘)INSERT INTO address (name) values ('Arbon‘)

Aneby |..... Athens |.........

Ardwick|....... Apach |.

ensen|..... Arnhem |...

Ap-

Arbon |.......

Sort by Insertion (1)

169184
239

143 81111 195

If a record is to be inserted into the database or edited, MaxDB first searches for the
data page that is changed by the action. This is true for all the actions described in the
following. Then, if necessary, the required space is made available by way of clearing
operations.

sort by insertion
The records are:

inserted into the target page at the end of the used data area,
sorted in the position list via an entry that, in order to minimize the number of moved bytes, contains
only references to records.

The records in the data part are only sorted if a clearing operation becomes necessary.
If a data page is moved into another one, a sorted block is advantageous as this makes
it possible to move whole groups of records rather than copying record by record.

MaxDB data pages are organized such that the data area grows into the page from the
beginning and the sorting list from the end.

Let's assume that the record fits on the page. MaxDB simply puts it at the end of the
area available on the page...

17

© SAP 2007 / MaxDB Internals – B*Trees and No-Reorg Method/ Page 17

INSERT INTO address (name) values ('Arbon‘)INSERT INTO address (name) values ('Arbon‘)

Ardwick|........

Aneby |..... Athens |.........

Ardwick|.......

ensen|..... Arnhem |...

Ap-

Arbon -

|.......

Aneby |.....

Apach |.

Apensen |.....

Arbon |.......

Arnhem |...

Athens |.......

Apach |.

Sort by Insertion (2)

169184239143111 195 81

... and then the position list is updated. The address of the new entry is written at the
correct position in the position list. In our case, the correct position is position 4, which
accordingly points to the seventh data record, 'Arbon'.

18

© SAP 2007 / MaxDB Internals – B*Trees and No-Reorg Method/ Page 18

UPDATE address
SET street = 'AKROPOLIS 1'
KEY city = 'Athens'

UPDATE address
SET street = 'AKROPOLIS 1'
KEY city = 'Athens'

Update in Place (1)

Aneby |..... Athens |.........

Ardwick|....... Apach |..

ensen|..... Arnhem |...

Ap-

169184143 81111 195

update in place
Records are changed directly on the target page.
Case 1: length and key remain unchanged.
If an UPDATE occurs and the separator is unchanged, the contents of the row are changed
directly.

Case 2: the key changes.
If changes have been made to a key field, the UPDATE is converted into a DELETE with
subsequent INSERT. If necessary, clearing operations are carried out.

19

© SAP 2007 / MaxDB Internals – B*Trees and No-Reorg Method/ Page 19

Update in Place (2)

UPDATE address
SET street = 'Olymp 27'
KEY city = 'Athens'

UPDATE address
SET street = 'Olymp 27'
KEY city = 'Athens'

Aneby |..... Athens |.. Ard-

Apach |. Apensen|..

81111

wick|.......

169184143195
166181140192

ensen|.....Arnhem |...

Case 3: The length is changed, the key remains unchanged.
The contents of the row are changed directly, but the position of the subsequent entries is different. Thus
the subsequent records need to be moved and the address information (of the subsequent records)
adjusted in the position list. If necessary, clearing operations are carried out.

If it is necessary to change the tree structure, first the required space is made available by
way of B* tree clearing operations or by inserting a new block; then the UPDATE is carried
out as described.

20

© SAP 2007 / MaxDB Internals – B*Trees and No-Reorg Method/ Page 20

Aneby |..... Athens |.........

Ardwick|.......

Apach |. Apensen |.....

em |...

Arnh-
Arbon |.......

Delete in Place (1)

DELETE FROM address WHERE name = 'Arbon'DELETE FROM address WHERE name = 'Arbon'

191206

169

143111 217 81

delete in place
Records are changed directly on the target page.
The positions in the sorting list must be changed on the target page for all physically subsequent
records
If a certain usage level is not reached, a B* tree clearing operation is carried out

21

© SAP 2007 / MaxDB Internals – B*Trees and No-Reorg Method/ Page 21

Aneby |..... Athens |.........

Ardwick|....... Apach |.

ensen|..... Arnhem |...

Ap-

Delete in Place (2)

DELETE FROM address WHERE name = 'Arbon'DELETE FROM address WHERE name = 'Arbon'

169184143 81111 195

The records and the position list on the page are re-arranged so that the storage space
used is contiguous.

All changes to pages are executed in the main memory. That makes them very fast, but
also CPU-intensive.

If the fill level of a page falls below a certain mark, the tree structure is rearranged. An
example of such a rearrangement will be shown later.

MaxDB offers the possibility of applying the attribute DYNAMIC to tables. Only very
simplified clearing operations are carried out on these tables. Such tables require more
space, but they offer noticeably higher performance. This attribute is suited to tables
that are highly dynamic, in particular through random accesses and large fluctuations in
the size of the table.

22

© SAP 2007 / MaxDB Internals – B*Trees and No-Reorg Method/ Page 22

An Au

Aalen... Aneby .. Athens.

Albas .. Amiens..

Inserting a Data Page (Page Split Operation)
(1)

INSERT INTO address (name) values (‘Albas‘)INSERT INTO address (name) values (‘Albas‘)

Now let's have a look at a simple change to the tree structure.

Let's assume that, due to an INSERT, the new data record no longer fits on the
corresponding page.

A new page is then created on which the new record and half of the data records from
the page that was too small for the INSERT are written. The respective records on the
original page are then deleted.

23

© SAP 2007 / MaxDB Internals – B*Trees and No-Reorg Method/ Page 23

Al An Au

Albas .. Amiens.. Aneby´ .. Athens.Aalen...

Inserting a Data Page (Page Split Operation)
(2)

INSERT INTO address (name) values (‘Albas‘)INSERT INTO address (name) values (‘Albas‘)

If necessary, the database system updates the pointers to the following pages.

In addition, the address and separator information for the new page is entered in the B*
index page above it.

If this also does not fit on the B* index page, a new page has to be inserted.

If the B* tree is no longer able to accept the new page, that is, even in the root page
there is no more space available in which to insert a new branch, the entire B* tree has
to be expanded by a new level.

24

© SAP 2007 / MaxDB Internals – B*Trees and No-Reorg Method/ Page 24

B* Tree Balancing (1)

If the distribution of pages in the B* tree is unbalanced, that is, if there is an inordinate
amount of pages on certain branches of the tree,...

25

© SAP 2007 / MaxDB Internals – B*Trees and No-Reorg Method/ Page 25

B* Tree Balancing (2)

performance suffers because, on average, more accesses are needed to find data
records.

Such states are recognized by MaxDB when INSERTs, UPDATEs and DELETEs are
processed and the tree is rearranged in the affected subareas. This procedure is known
as balancing. This involves moving records back and forth between pages in order to
achieve the highest possible utilization of the pages.

26

© SAP 2007 / MaxDB Internals – B*Trees and No-Reorg Method/ Page 26

Read
lock

Exclusive
lock

Exclusive
lock

T1 T2 T3 User Tasks

Write accessRead access

B* Tree Locks (as of version 7.5)

Root Level

Index Level

Leaf Level

Read
lock

Read
lock

Each time a B* tree is accessed, the respective page must be locked. From version 7.5,
these locks are no longer managed in separate lock lists but rather directly in the
data cache. A lock is requested when the desired page in the data cache is accessed.

Advantages as compared with the lock concept in versions 7.3 and 7.4: a significant
characteristic, and thus also the biggest disadvantage of the old concept, was that the
locks for the pages B* tree were managed in a separate component, the so-called tree lock
list. Heavy parallel access to the list could lead to collisions.

Check Data / Check Table (VERIFY): In contrast to the SAP DB Versions 7.3 and 7.4, in
7.5 this new concept makes it possible to execute change operations on the B* trees in
parallel with Check Data or Check Table.

27

© SAP 2007 / MaxDB Internals – B*Trees and No-Reorg Method/ Page 27

B* Trees

Exactly one B* tree for:
every table
every table with columns of type BLOB for all short BLOB values (< ca. 8 KB)
every longer BLOB value (> ca. 8 KB)
every index
subtrees of indexes

MaxDB uses B* tree structures for the storage of all its tables.

The term "table" includes:
Primary data, including the associated BLOB data (BLOB: Binary Large Object)

Secondary data as required for single and multiple secondary keys.

A MaxDB table always has a primary key. This is either a user-defined key or a generated
internal key. A user-defined key can be comprised of several columns (multiple key).

The user can define additional secondary keys, which can also consist of one (single
index) or several (multiple index) columns.

There is exactly one B* tree for the primary data of a table and also precisely one B* tree
for each defined index (also known as: secondary key, inversion). If a table is defined with
BLOB columns, one additional B* tree is created for the purpose of accepting the BLOB
values in these columns that do not exceed a certain length. If BLOB values are longer
than this defined value, a new B* tree is created for every single one of these values.

28

© SAP 2007 / MaxDB Internals – B*Trees and No-Reorg Method/ Page 28

BLOB Columns

K1
K2
K3

10
4000
32000

BLOBid 1
BLOBid 2
BLOBid 3

Primary table Table for
short BLOB values

BLOBid 1
BLOBid 2

L-Data
L-Data

Proprietary files
for longer
BLOB values

K4 32000 BLOBid 4

...

...

...

...

...

...

...

...

BLOB
-Data

This illustration shows a table with a BLOB column. The number column represents the
length of the BLOB values. There is a B* tree for primary data, a B* tree for the shorter
BLOB values and n B* trees for n longer BLOB values.

Irrespective of their length, for BLOB values the primary table always has a single entry of
a fixed length which refers to the respective storage structure.

29

© SAP 2007 / MaxDB Internals – B*Trees and No-Reorg Method/ Page 29

K1
K2
K3

Primary table Index table

K4

...

...

...

...

10
10

10

10K5
K6
K7

10
20

10
20

10

30

40

4020
40

1010 K1 K3 K5
K2
K4

2010
2040 K6

K74030

Indexes

… …

...

...

This illustration shows an example of a table with a secondary key defined for multiple
fields (2 fields). There is one B* tree for the primary data and a second B* tree for the
inversion data.

The B* index is not to be confused with the term index as it is commonly used for
secondary key definitions (inversion)!

If the primary key values for a secondary key value cannot be contained on one data page,
MaxDB stores the primary key values, sorted, in a separate B* tree. This means that the
size of the secondary key tree can be significantly decreased.

30

© SAP 2007 / MaxDB Internals – B*Trees and No-Reorg Method/ Page 30

B* Trees

...

...

...

...

K I L ...

...

...

...

K: Key
I: Index
L: BLOB column

Primary data Index

short BLOBs longer BLOBs

...

...

...

...

...

...

This illustration, taking the example of a table that contains BLOB data and for which a
secondary key has been defined, depicts how the assignment to B* tree structures works.

31

© SAP 2007 / MaxDB Internals – B*Trees and No-Reorg Method/ Page 31

TABLEID OWNER TABLENAME INDEXNAME TYPE ROOT

000000000000044D SAPR3 DD03L DD03L~1 NAMED INDEX 163803
000000000000044D SAPR3 DD03L DD03L~2 NAMED INDEX 174959
000000000000044D SAPR3 DD03L DD03L~3 NAMED INDEX 181836
000000000000044D SAPR3 DD03L DD03L~4 NAMED INDEX 190634
000000000000044D SAPR3 DD03L DD03L~5 NAMED INDEX 198051
000000000000044D SAPR3 DD03L DD03L~7 NAMED INDEX 211711
000000000000044D SAPR3 DD03L DD03L~6 NAMED INDEX 209669
000000000000044D SAPR3 DD03L ? TABLE 127211
0000000000001C61 SAPR3 ATAB ? TABLE 966183
0000000000001C61 SAPR3 ATAB ? SHORT STRING 966184

FILE

System Table ROOTS

Tables are internally administered by a 'tableid‘

Mapping to B* trees via an entry in the file directory.

A table, which is known to the user by a name, is internally administered with a ‘tableid’.
The correlation between the names and tableids is registered in the database system
dictionary (catalog).

There is also the database file directory, which contains the assignments of the root
nodes of the B* trees to the tableids of the database objects. The tableids are stored in the
file directory along with a type flag which indicates what contents the underlying B* tree
has.

Thus a single tableid, in combination with the type flag, can be used to administer a table
with all its associated B* tree entries in the file directory.

The system table ROOTS contains information from the file directory and the database
catalog.

32

© SAP 2007 / MaxDB Internals – B*Trees and No-Reorg Method/ Page 32

System View FILES

As of Version 7.6, the FILES system view displays all information in the new file directory.

The user can specify the route to the database catalog in his SQL query. The columns of the FILES view
mean the following:

Size of all BLOB values of the tableLOBSIZE

Size of leaf level in KBTREELEAVESIZE

Size of index level in KBTREEINDEXSIZE

Number of entries in the tree. For indexes, entries in subtrees
are not included.
NULL: Value was not yet determined for migrated systems.

ENTRYCOUNT

OK | DELETED | BAD | READ ONLYFILESTATE

FILEID of the B* tree of the tablePRIMARYFILEID

TABLE | INDEX | FIXED OBJECT | VARIABLE OBJECT |
KEYED OBJECT | KEYED OBJECT INDEX | SHORT
COLUMN FILE | internal file type for temporary files

TYPE

Root page number of the B* treeROOT

Creator session for temporary treesSESSIONID

Corresponds to ID for tables, indexes, etc. in the catalogFILEID

33

© SAP 2007 / MaxDB Internals – B*Trees and No-Reorg Method/ Page 33

Data Volumes

Disk Striping

An important role in the access performance of the database is playing by the MaxDB
striping mechanism, which distributes the data pages evenly on the disks. Additional
striping can be performed by the hardware.

Striping guarantees even distribution of the I/O load on the available disks.

Even load balancing of all the data areas in the database also prevents individual data
areas from overflowing. A table can be larger than a single data area without the need
for maintenance tasks to be carried out.

34

© SAP 2007 / MaxDB Internals – B*Trees and No-Reorg Method/ Page 34

I/O Concept

Parallel asynchronous I/0
Shadow page algorithm

– Converter
– Free block management
– Savepoints
– Backup integration
Segmentation of the data cache
Datawriter and server tasks
Log flush

The I/O concept of the database works according to the shadow storage administration principle. The core
elements are: optimized support of symmetrical multi-processor systems; the transfer of as many I/Os as
possible to asynchronous execution; and highly-optimized data backup performance suited to the dimensions
of modern databases.

A user task should not be forced to wait for I/O processes to come to an end. All change operations are
executed in the main memory. The I/O subsystem must ensure that the system always retains its ability to
restart at the point of termination.

The shadow storage administration distinguishes between originals and copies. When the system is restarted
after termination, the valid states of the data pages are automatically recognized. The concept is based on
savepoint cycles, which are closed by a savepoint. A completed cycle is specified by the version number of
its savepoint. This number is referred to as the 'savepoint version' or 'converter version'.

The different versions of the data pages that arise as a result of the savepoint cycles are administered in the
converter. Here the originals and copies of the logical data pages are assigned physical blocks. Thus the
location at which a logical data page is stored can change from savepoint cycle to savepoint cycle.

Another structure is employed for the administration of the data volumes (FBM: Free Block Manager). As the
logical data pages no longer have a definite location in the memory, the FBM administers the states of the
physical blocks. These structures enable optimal performance for data backup as well.

The data cache was optimized with regard to SMP support by the use of datawriter and server tasks that
work in parallel.

35

© SAP 2007 / MaxDB Internals – B*Trees and No-Reorg Method/ Page 35

Memory & Disk

Data Volumes

Data 1 Data 2 Data 3

Catalog
Cache

I/O Buffer Cache

Data Cache

Converter
Cache

FBM
Shared

SQL
Cache

The introduction of shadow storage administration brought the launch of the converter.
From Version 7.4, the converter is no longer stored in the system devspace but distributed
across the data volumes. Every I/O access to a data page retrieves its information from
the converter. For that reason, the complete contents of the converter are kept in the main
memory (converter cache).

Free block management (FBM) for free blocks in the data volumes is kept in the main
memory and is reconstituted with each restart using information from the converter.

Other important caches include the data cache, which contains the most recently used
data pages; the catalog cache, which contains dictionary information on the used object
and, if shared SQL is not active, buffers execution plans; and the shared SQL cache,
which contains executed SQL statements, execution plans and monitor data.

The next few pages will present the concept of shadow memory using examples.

36

© SAP 2007 / MaxDB Internals – B*Trees and No-Reorg Method/ Page 36

Shadow Page Algorithm (1)

DATA 1 DATA 2

time
update
4711

Savepoint
version 22

4712

IO Buffer Cache

47114711

4712

4711

Converter page 2 Savepoint 21

4711
4712

DATA 3

C 2

C 2

1 189 1 0 0
2 2350 1 0 0

4711

2 177 1 1 0

— 22
Data
Pno

Device
No

Device
Offset

Used Save
Pages

Saved

In our example, the database instance is in the online operational state. The last completed savepoint cycle has
the number 21.

The IO buffer contains data and converter pages.

In the converter pages, we find the positions of the data pages in the data volumes.

Data page 4711 will now be changed in the cache in savepoint cycle 22. Initially, this change does not lead to a
write operation to the data volumes.

The savepoint cycle is closed with a savepoint. First, all changed pages are written to the data volumes. For
data page 4711, the FBM determines position 177 in data volume 2. Data page 4711 is written to the
determined position in the data volume and the position data is written to the converter page. The data page is
not written at the position that was valid for savepoint 21.

After all changed data pages have been written to the data volumes, the savepoint versions in the changed
converter pages are set to the number of the savepoint cycle and the converter pages written to the data
volumes.

Each converter page stores the positions of up to 1861 data pages.

A converter page contains the following information about each data page:
the number of the data volume,

the number of the data volume,

a flag indicating whether the data page is in use (required to indicate used data pages that have not yet been written to a
data volume),

a flag indicating whether the data page is relevant for incremental backups,

a flag indicating whether the datap page was already backed up in the incremental backup.
This way the information on the data page to be saved is not lost in the case of an aborted incremental backup.

37

© SAP 2007 / MaxDB Internals – B*Trees and No-Reorg Method/ Page 37

4711

Shadow Page Algorithm (2)

DATA 1 DATA 2

time
update
4711

Savepoint
version 22

4712

IO Buffer Cache

4711

4712

Converter page 2 Savepoint 22

4711
4712

DATA 3

C 2

C 2

2 2350 1 0 0
2 177 1 1 0

Savepoint
version 23

delete
4712

-1 -1 0 1 0

— 23

C 2

Data
Pno

Device
No

Device
Offset

Used Save
Pages

Saved

In savepoint cycle 23, a user deletes all entries in data page 4712. Upon release, the page
is immediately marked as free in the converter.

Only the converter page is re-written at the time of the savepoint. Data page 4712 is not
re-written. The converter page is written to a new position in a data volume.

After the completion of the savepoint, the former position of data page 4712 in the data
volumes is marked as free in the FBM.

38

© SAP 2007 / MaxDB Internals – B*Trees and No-Reorg Method/ Page 38

Shadow Page Algorithm (3)

DATA 1 DATA 2

time
update
4711

Savepoint
version 22

IO Buffer Cache

4711

Converter page 2 Savepoint 23

4711
4712

DATA 3

C 2

2 177 1 1 0

Savepoint
version 23

delete
4712

— 24

C 2

Savepoint
version 24

new
4712

4712
-1 -1 0 1 0

4712 C 2

4711

-1 -1 1 1 01 1235 1 1 0

Data
Pno

Device
No

Device
Offset

Used Save
Pages

Saved

In savepoint 24, the database uses page 4712 for new data. The data page could already
have been reassigned in savepoint cycle 23.

The new data page is marked as used in the converter. But no position for a data volume has
been entered yet.

Initially, changes take place only in the cache. Upon completion of the savepoint cycle, the
data page is written and its position entered in the converter. The converter page is written
to a new position in a data volume.

39

© SAP 2007 / MaxDB Internals – B*Trees and No-Reorg Method/ Page 39

Shadow Page Algorithm (4)

DATA 1 DATA 2

time
update
4711

Savepoint
version 22

IO Buffer Cache

4711

Converter page 2 Savepoint 24

4711
4712

DATA 3

C 2

2 177 1 1 0

Savepoint
version 23

delete
4712

Savepoint
version 24

new
4712

-1 -1 P 1 0

C 2

1 1235 1 1 0

4711

4712

4712

Savepoint
version 25

update
4711

write
4711

4711
1 438 1 1 0

4711

Data
Pno

Device
No

Device
Offset

Used Save
Pages

Saved

Data page 4711 is changed again in savepoint 25.

A data page can be written even before the completion of the savepoint cycle. The
savepoint itself generally takes a few seconds as several data pages are written.

Data page 4711 is written and the new position entered in the converter page. The
savepoint is not yet complete.

40

© SAP 2007 / MaxDB Internals – B*Trees and No-Reorg Method/ Page 40

Restart after Emergency Shutdown

DATA 1 DATA 2

time
update
4711

Savepoint
version 22

IO Buffer Cache

DATA 3

C 2

Savepoint
version 23

delete
4712

Savepoint
version 24

new
4712

C 2

4711

4712

Savepoint
version 25

update
4711

write
4711

4711 Savepoint 24
redo

undo
LOG

47114711

Converter page 2 Savepoint 24

4711
4712

2 177 1 1 0
1 1235 1 1 0

Data
Pno

Device
No

Device
Offset

Used Save
Pages

Saved

Before savepoint 25 is complete, an emergency shutdown occurs. The next restart reads
the valid converters for savepoint 24 from the data volumes.

Free block management sets up when the converter is read. The position occupied by data
page 4711 through the write operation in savepoint 25 is marked as free.

Data page 4711 can be read via the old valid position.

The starting point in the restart page for savepoint 24 is known. The redo log entries are
redone starting from this point. The change to data page 4711 during savepoint cycle 25
will be redone if the transaction that performed the change was completed with Commit
before the emergency shutdown took place.

The writing of the restart page to position 2 in data volume one completes a savepoint
cycle.

41

© SAP 2007 / MaxDB Internals – B*Trees and No-Reorg Method/ Page 41

Converter

Restart

Data
Pno

Used Save
Pages

Save
Pages
Pending

Device
No

Device
Position

1861 1 0 0 2 177

1862 1 0 0 1 8893

...

Dynamic page numbers (SQL)

Data
Pno

0-1860

1861-3721

3722-5582

...

Data Volumes

Conv. map Converter page

Converter page SQL data page OMS data page

Static page numbers (OMS)

Conv. map Converter page
Data
Pno

0-1860

1861-3721

3722-5582

...

Data
Pno

Used Save
Pages

Save
Pages
Pending

Device
No

Device
Position

1861 1 0 0 3 523

1862 1 0 0 4 8893

...

In versions < 7.4, the converter was implemented as a static array. The ability to enlarge an instance in online
mode was limited. The limit was set with the parameter MAXDATAPAGES. This parameter defined the size
of the converter. So the converter was generally larger than necessary.

From Version 7.4, the converter can grow and shrink dynamically. The converter pages are distributed across
all data volumes. Upon restart, read access to the converter pages is done via a tree structure. The tree has
3 levels: a root level, an index level and a leaf level. Upon restart, the database finds the root page of the
converter via the restart page at the beginning of the first data volume. It contains the positions of the index
pages. For their part, the index pages contain positions of the leaf pages. The leaf pages are not necessarily
sorted. From Version 7.4.3., the restart reads the converter pages in parallel.

The tree as a whole contains pages for 3 converters, one each for

Static page numbers for OMS data (live cache)
Dynamic page numbers for permanent data that is not OMS data
Page numbers for temporary pages

Static and dynamic data pages are handled separately for the following reasons:

Changes to relational data are logged in the log without position information for the data records.
Changes to OMS data are done on the basis of an object ID. The object ID contains the number of the data page that
contains the object.
Without this separation, under some circumstances it might not be possible to restore objects in a log recovery due to
the corresponding data page number for relational having been assigned.

42

© SAP 2007 / MaxDB Internals – B*Trees and No-Reorg Method/ Page 42

Scalability through Converter Implementation

Data
Pno

Used Save
Pages

Save
Pages
Pending

Device
No

Device
Position

0 1 0 0 2 177

1 1 0 0 1 8893

...

Converter page 1

Restart

Data volumes

D ata
P n o

0 -1 8 6 0

1 8 6 1 -3 7 2 1

3 7 2 2 -5 5 8 2

5 5 8 3 -7 4 4 3

...

Conv. map

pager

user

Data
Pno

Used Save
Pages

Save
Pages
Pending

Device
No

Device
Position

1861 1 0 0 2 345

1862 1 0 0 4 437

...

New pno

Write pno 3826

New
pno

Page
Handler

Cache-Postion

Lock-Flag

Number of Free

...

Converter page 2

user
New pno

A converter page has 8192 bytes. It contains references for 1861 data pages. A database
with 500 GB of used data requires a converter of roughly 278 MB.

When the converter is read during the restart, a converter map is generated in the cache.
The converter pages in the cache do not have fixed positions. The position of a converter
page is determined via the converter map each time it is accessed.

For each converter page, the converter map contains the cache position and the number
of free entries as well as administration information for the savepoint.

Accesses to converter pages are synchronized through the use of converter regions. Each
entry in the converter map is assigned a region. You can set the number of regions with
the parameter CONVERTER_REGIONS. This allows several users to access and change
converter pages at the same time.

From 7.4, free page numbers are no longer determined by way of a PNO pool. They are
determined directly from the converter. Free entries in the converter pages are
concatenated via main memory structures. So several users working at the same time can
use new pages very quickly.

43

© SAP 2007 / MaxDB Internals – B*Trees and No-Reorg Method/ Page 43

Writing to Converter during Savepoint

Data volumes

Converter pageSQL data page 1862

row 1 row 2 row 3
Record 4 row 5

t
End Svp 22 Update

record 4

row 4

Start Svp 23 Write 1862

9732

Write
Converter

Write Restart Page
End Svp 23

Restart

Data
Pno

Used Save
Pages

Save
Pages
Pending

Device
No

Device
Position

1861 1 0 0 3 523

1862 1 0 0 4 8893

...

During the savepoint the database kernel writes all changed data pages to the data
volumes. It enters the new positions in the converter.

The kernel writes the changed converter pages in the last savepoint phase. The pages are
not written to their original positions. Because the position of the converter pages changes,
the corresponding converter index and converter root are also changed. These pages are
also written to new positions.

When all changed data and converter pages have been written, the position of the
converter root is entered in the restart page. The restart page for the old savepoint is
overwritten in the data volume.

The savepoint is complete when the restart page is written. This ensures that the kernel
can always restart from the last completed savepoint.

44

© SAP 2007 / MaxDB Internals – B*Trees and No-Reorg Method/ Page 44

Advantages of Converter 7.5 compared to 7.3

Operation without System Volume
No hotspot on one volume
Fast restart and fast savepoint through parallel I/O

Distinction static – dynamic converter
Ability to recover liveCache instances

Converter in the I/O buffer cache
Manual adaptation of the converter cache to the DB size is not necessary

Parallel awarding of free page numbers

Converter may grow and shrink dynamically
Online ADD DATA VOLUME without limitation to MAXDATAPAGES
DROP DATA VOLUME (not yet implemented)

Highest page number independent of the converter size
Restore to smaller instances just with limitation to the grade of occupied pages

Snapshot support

45

© SAP 2007 / MaxDB Internals – B*Trees and No-Reorg Method/ Page 45

Volume 1:

Volume 2:
device offset page state backup state

177 free after sp backup

Free Block Management

FBM: Free Block Manager

Bit list per data volume
Used capacity states:

free
occupied
free after savepoint

Backup states:
free
backup

exists in the memory

is built during start of the DB

device offset page state backup state

434 occupied free

1235 occupied free

The Free Block Manager, which only exists in the memory, administers all data devices
using a bit list for each device. This includes the used capacity status and the backup
status. The possible statuses are:

Free:
The block is free and can be allocated.
Occupied:
The block is occupied.
Free after savepoint:
The block can be released after the current savepoint has been successfully completed.
Backup:
The block belongs to a backup that is in process. When the block has been backed up, that is,
written to the backup medium, the status is reset.

If a block has been selected for a backup in process, the used capacity status of a block
can change. A block can only be reallocated when the used capacity and backup
statuses are both "free."

From version 7.4, the Free Block Manager is part of converter management.

46

© SAP 2007 / MaxDB Internals – B*Trees and No-Reorg Method/ Page 46

DATA DATA

dc0 dc1 dcn

Data Cache

Converter Cache

Savepoint Phases

cn…c1 c2

Write changed data pages (parallel)

Prevent B* tree operations

Occupy transaction regions

Write log entry

Remember open transactions

Release all resources

Write changed data pages of the 1st
phase (parallel)

Write converter pages (parallel)

Write log info and restart page

Increase savepoint version

The savepoint is a core function of the I/O concept. The illustration shows what happens during a savepoint.

The savepoint writes the data from the data cache and the converter cache to the corresponding data
volumes. Due to the size of the two caches, this cannot be carried out as a synchronous action; the system
would be blocked for too long. There has to be a short phase in which the caches can be securely flushed,
but this must be kept to a minimum.

The standard is for savepoints to occur at intervals of 10 minutes. To minimize the amount of data to be
flushed in the protected section (marked red), the savepoint begins by flushing the data cache parallel to
operation. The data cache is processed by several data writers simultaneously. The largest share of pages
is flushed in this phase.

In the second phase, a flag is set which prohibits clearing operations on B* trees. It is also prohibited to open
new transactions during this phase. All pages that were changed in the course of the first phase are marked
as savepoint relevant. An open trans file is created for open transactions.

In the last phase, all pages that were marked during the second phase are flushed. The flags are reset. First,
all changed pages are written to the data volumes. The savepoint is complete when the restart page is
written. Afterwards the savepoint version (number) is updated.

The protected phase of the savepoint is generally quite short and goes unnoticed by the end user.

47

© SAP 2007 / MaxDB Internals – B*Trees and No-Reorg Method/ Page 47

Backup Phases

Savepoint before the backup starts
The data belonging to one savepoint contains all necessary undo information of open
transactions. Thus the database is transaction consistent. It can be set to ONLINE mode
with a restart without any log.

The savepoint looks for data pages relevant for backup in the converter and sets the
backup flag in the FBM.

Parallel backup through server tasks along the FBM

Data backups are carried out with a block size of 8 x 8 KB and can be parallelized.

Data backups start with a savepoint. A backup includes the data existing at the time of the
savepoint. Subsequent changes are not included in the backup. The database can write
further savepoints while the backup is in process.

48

© SAP 2007 / MaxDB Internals – B*Trees and No-Reorg Method/ Page 48

device offset page state backup state

1235 occupied backup

177 occupied backup

FBM

DATA

Backup along the FBM

Converter page 2 Savepoint 24
Data
Pno

Device
No

Device
Offset

Page
Type

Save
Pages

Saved

4711 2 177 P 1 0
4712 1 1235 P 1 0

The savepoint that is executed at the start of the data backup determines the savepoint
version of the backup. Through the converter, the data blocks on the data devices that are
valid for this savepoint are determined for all data pages and the backup status is set in
the FBM.

The data backup uses the bit lists of the FBM. There the data blocks are combined into 64
KB I/O units. This procedure executes one task per data volume. The backup status is
reset following each block backup. Data blocks that have been freed for use can only be
reallocated when the backup status has been reset.

49

© SAP 2007 / MaxDB Internals – B*Trees and No-Reorg Method/ Page 49

tape_serv

8x8k blocking

Parallel Backup

tape_serv

dev_serv

DATA DATA

dev_serv

DATA

dev_serv

buffer

This illustration depicts a data transfer from the data volumes to the backup media. Each
volume has a task that puts the 64 KB units into a buffer. One task per backup device
reads the blocks from the buffer and stores them on the backup medium.

The limits of this process are posed either by the access speed of the data volumes, the
writing performance of the backup devices or the transport layer (e.g. network) between
the database server and the backup devices. As long as these limits are not reached, the
process scales with any other backup device in parallel operation.

50

© SAP 2007 / MaxDB Internals – B*Trees and No-Reorg Method/ Page 50

Server Tasks and Pager Tasks

Server:
Backup, Create Index, CHECK DATA

Datawriter:
Read the converter during the restart of the instance
Savepoints
write_ahead of changed data pages from data cache to the data volumes

Are indicated in the Taskcluster with sv and dw.

In the task display (x_cons, CCMS) with server and datawr.

The auxiliary tasks have reduced stack requirements and should run in one or
more dedicated UKTs.

Server tasks or pager tasks have a reduced stack requirement as they do not have to carry
out syntax analysis or related activities, but only process pre-translated requests.

To prevent the server tasks from negatively influencing the user tasks due to their high
throughput, they are created in their own thread (UKT) in the standard.

During times in which a system is working with a moderate to low I/O load, pager tasks
perform so-called write-ahead operations. This means that data pages that have been
changed in the data cache are written to the data volumes ahead of time, i.e. before a
savepoint or displacement. This in turn means a reduction of the burden on the first phase
of the coming savepoint as there is substantially less I/O to be handled. In general, a
favorable setting of the pager tasks can ensure a consistently low and largely
asynchronous I/O load.

51

© SAP 2007 / MaxDB Internals – B*Trees and No-Reorg Method/ Page 51

Data Cache - Segmentation

The data cache is divided into segments of the main memory (regions).

Number of regions is adjustable (8 – 1024, the default value depends on the cache
size).

More parallelism by multiplication of regions (MaxDB internal synchronization
mechanism)

Pages are definitely assigned to a segment by a hash function.

During savepoints the segments can be written through in parallel by pager tasks.

The data cache was divided into segments to enable better SMP support and to accelerate
savepoints. Each segment is secured by its own region. The data pages are uniquely
assigned to a segment, that is, a data page with the page number 4711 (pno), for example,
is always administered in the second cache segment.

As of version 7.6.03 the number of possible segments has increased from 64 to 1024.

52

© SAP 2007 / MaxDB Internals – B*Trees and No-Reorg Method/ Page 52

Snapshot

Freezing the data area
Create Snapshot (ADMIN)
Restore Snapshot (ADMIN)
Drop Snapshot (ADMIN)
Typical usage:
– Very fast point-in-time recovery (e.g. for SAP upgrades, installation of support

packages)
– Restore of training systems to a defined state

Restart
Restart 1

From version 7.5, you can freeze the data area of a database instance using a snapshot.

A snapshot is generated in the Admin state. Later you can reset the data to its state at the
time of the snapshot and/or delete the snapshot.

With the CREATE_SNAPSHOT command, the database kernel copies the restart page
from the second block of the first data volume to another position. The complete converter
is also copied. The original restart record contains a reference to the restart record that
corresponds to the snapshot.

With the command RESTORE_SNAPSHOT, the current converter is deleted. All blocks
that are no longer needed are marked as free in the FBM. The log is formatted such that
the state HISTLOST occurs. At the next restart, the instance works with the data as they
were at the time of the CREATE_SNAPSHOT.

The statement DROP_SNAPSHOT deletes the restart record and the corresponding
converter that is relevant for the snapshot. The FBM marks all blocks that are no longer
needed as free.

MaxDB supports only a single snapshot. Operating the instance with a snapshot uses
more of the capacity of the data area.

53

© SAP 2007 / MaxDB Internals – B*Trees and No-Reorg Method/ Page 53

Master - Slave with Snapshots

Data 01.01.2005

Master

Data

Slave

Complete

Data 07.01.2005

:
:
:
:

Create Snapshot

Incremental

Complete

Incremental

Restore Snapshot

Data 07.01.2005

:
:
:
:

Data 14.01.2005 IncrementalIncremental

Restore Snapshot

Data 14.01.2005

:

:
:
:

MaxDB offers the possibility of using snapshots to synchronize a master and one or more
slave instances.

Create the slave instance as a homogeneous system copy using Backup/Restore. Before
the first restart of the slave instance, generate a snapshot.

To transfer changes in the master instance to the slave instance, reset the slave instance
to the snapshot. Then import an incremental backup from the master instance. You can
reset the slave instance to the snapshot as often as you like and import incremental
backups from the master instance.

This procedure works until a complete backup is created in the master instance. Then new
incremental backups no longer match the snapshot in the slave instance. To synchronize it
with the master, you can import a complete data backup into the slave instance.

54

Questions ?

55

© SAP 2007 / MaxDB Internals – B*Trees and No-Reorg Method/ Page 55

Copyright 2007 SAP AG
All rights reserved

No part of this publication may be reproduced or transmitted in any form or for any purpose without the express permission of SAP AG. The information contained herein may be changed
without prior notice.
Some software products marketed by SAP AG and its distributors contain proprietary software components of other software vendors.
SAP, R/3, mySAP, mySAP.com, xApps, xApp, SAP NetWeaver, Duet, Business ByDesign, ByDesign, PartnerEdge and other SAP products and services mentioned herein as well as their
respective logos are trademarks or registered trademarks of SAP AG in Germany and in several other countries all over the world. All other product and service names mentioned and
associated logos displayed are the trademarks of their respective companies. Data contained in this document serves informational purposes only. National product specifications may vary.

The information in this document is proprietary to SAP. This document is a preliminary version and not subject to your license agreement or any other agreement with SAP. This document
contains only intended strategies, developments, and functionalities of the SAP® product and is not intended to be binding upon SAP to any particular course of business, product strategy,
and/or development. SAP assumes no responsibility for errors or omissions in this document. SAP does not warrant the accuracy or completeness of the information, text, graphics, links, or
other items contained within this material. This document is provided without a warranty of any kind, either express or implied, including but not limited to the implied warranties of
merchantability, fitness for a particular purpose, or non-infringement.
SAP shall have no liability for damages of any kind including without limitation direct, special, indirect, or consequential damages that may result from the use of these materials. This limitation
shall not apply in cases of intent or gross negligence.
The statutory liability for personal injury and defective products is not affected. SAP has no control over the information that you may access through the use of hot links contained in these
materials and does not endorse your use of third-party Web pages nor provide any warranty whatsoever relating to third-party Web pages

Weitergabe und Vervielfältigung dieser Publikation oder von Teilen daraus sind, zu welchem Zweck und in welcher Form auch immer, ohne die ausdrückliche schriftliche Genehmigung durch
SAP AG nicht gestattet. In dieser Publikation enthaltene Informationen können ohne vorherige Ankündigung geändert werden.
Einige von der SAP AG und deren Vertriebspartnern vertriebene Softwareprodukte können Softwarekomponenten umfassen, die Eigentum anderer Softwarehersteller sind.
SAP, R/3, mySAP, mySAP.com, xApps, xApp, SAP NetWeaver, Duet, Business ByDesign, ByDesign, PartnerEdge und andere in diesem Dokument erwähnte SAP-Produkte und Services
sowie die dazugehörigen Logos sind Marken oder eingetragene Marken der SAP AG in Deutschland und in mehreren anderen Ländern weltweit. Alle anderen in diesem Dokument erwähnten
Namen von Produkten und Services sowie die damit verbundenen Firmenlogos sind Marken der jeweiligen Unternehmen. Die Angaben im Text sind unverbindlich und dienen lediglich zu
Informationszwecken. Produkte können länderspezifische Unterschiede aufweisen.

Die in diesem Dokument enthaltenen Informationen sind Eigentum von SAP. Dieses Dokument ist eine Vorabversion und unterliegt nicht Ihrer Lizenzvereinbarung oder einer anderen
Vereinbarung mit SAP. Dieses Dokument enthält nur vorgesehene Strategien, Entwicklungen und Funktionen des SAP®-Produkts und ist für SAP nicht bindend, einen bestimmten
Geschäftsweg, eine Produktstrategie bzw. -entwicklung einzuschlagen. SAP übernimmt keine Verantwortung für Fehler oder Auslassungen in diesen Materialien. SAP garantiert nicht die
Richtigkeit oder Vollständigkeit der Informationen, Texte, Grafiken, Links oder anderer in diesen Materialien enthaltenen Elemente. Diese Publikation wird ohne jegliche Gewähr, weder
ausdrücklich noch stillschweigend, bereitgestellt. Dies gilt u. a., aber nicht ausschließlich, hinsichtlich der Gewährleistung der Marktgängigkeit und der Eignung für einen bestimmten Zweck
sowie für die Gewährleistung der Nichtverletzung geltenden Rechts.
SAP übernimmt keine Haftung für Schäden jeglicher Art, einschließlich und ohne Einschränkung für direkte, spezielle, indirekte oder Folgeschäden im Zusammenhang mit der Verwendung
dieser Unterlagen. Diese Einschränkung gilt nicht bei Vorsatz oder grober Fahrlässigkeit.
Die gesetzliche Haftung bei Personenschäden oder die Produkthaftung bleibt unberührt. Die Informationen, auf die Sie möglicherweise über die in diesem Material enthaltenen Hotlinks
zugreifen, unterliegen nicht dem Einfluss von SAP, und SAP unterstützt nicht die Nutzung von Internetseiten Dritter durch Sie und gibt keinerlei Gewährleistungen oder Zusagen über
Internetseiten Dritter ab.
Alle Rechte vorbehalten.

