
 1 



 2 



 3 



 4 

SQL Optimizer is a part of the kernel of the database system. It analyzes SQL queries 

and selects the best search strategy for accessing the data. You can specify the 

search condition in the SQL statement in the WHERE clause or via the join condition.  

 

Goals of Optimization:  

An SQL performance analysis involves the identification, analysis, and optimization of 

SQL statements that are responsible for the highest load as regards I/O at the 

database level. These statements are also called "processing-intensive SQL 

statements". 

 

Regular analysis and optimization of expensive SQL statements provides THE most 

important basis for high-performance system operation. Resource-intensive SQL 

statements are directly responsible for increased I/O and CPU activities, and 

therefore result in a poor data cache hit ratio.  

More information can be found in SAP note 819324: FAQ SAP MaxDB SQL 

Optimization 

 



 5 

Cost-based optimizers determine the best search strategy with the help of information 
about the size of the table and values within the table columns. 

A cost-benefit plan is created for the various access options. The best strategy is 
chosen to execute the command depending on the values sent in the WHERE 
condition. Therefore, the eventual search strategy can only be determined at the time 
of execution. 

MaxDB supports cost-based optimizers. 

 

Before the optimization Query Rewrite checks if the statement can be rewritten in a 
reasonable way. This check and conversion is done rule-based. 

 



 6 

What is a selection or also called search condition? 

Selection conditions ( search conditions) are specified in the WHERE part of the SQL statement. Within 

the framework of a selection condition, a column is compared with one or several actual values (for 

example, "MANDT = :A0", "BDAT greater than '20050821' ").  

 

Search conditions used by the optimizer to determine the optimal search strategy are: 

 Equality conditions 

 Range conditions 

 IN conditions 

 LIKE conditions 

 

The best strategy is chosen by the optimizer. The basis of decision making are the cost for each 

evaluated strategy. 

 

The SQL Optimizer also converts conditions under certain circumstances. If a single value is specified 

in an IN condition multiple times, the condition is converted into an equality condition. 

 



 7 

To fullfill the qualification (WHERE STR = ‚Wexstr‘) the total table can be read and 

each record can be compared with the qualification. 

 

To minimize the costs the optimizer tries to reduce the area on the table which has to 

be read to check the qualification and deliver the result. 

 

If the table is sorted by the columns of the qualification, binary search is possible. An 

area can be found, which includes all the requested result (START and STOP key). 

You can sort the table by a single column or several columns. 

 

These kind of sorts are called Index. A special kind of index is the primary key. 



 8 

Each database table has a primary key (primary index). The primary key is either defined by the user or 

generated by the system. A user-defined primary key can consist of one or more columns. The primary 

key must have a unique value for each table row. 

 

The MaxDB primary key is a UNIQUE index that is implemented directly on the data tree. The data is 

sorted by the primary key.  

 

 A separate B* tree is created for a secondary key (or index). The secondary key (index) contains no 

physical addresses on the data tree, instead it contains logical addresses in the form of primary keys. 

An index is a database object that can be created for an individual column or a series of columns in a 

database table.  

The data of the secondary index is sorted by the index column(s). 
 
You can create an index to speed up the search for database records in a table. In technical terms, 
indexes are data structures (consisting of one or more primary key lists), which store parts of the data 
of a table in a separate B* tree structure. This storage sorts the data according to the inverting key 
fields (index columns). Due to this type of storage, the table data can be accessed faster using the 
indexed columns. 

 

For more information about indexes use SAP note 928037 FAQ SAP MaxDB Indexes 

 



 9 

In this session, we use the table ZZTELE with approx. 115,000 records for the examples. The primary 
key is defined on the columns NAME,VORNAME,STR  

The uniqueness of the primary key ensures that we only have one entry with the same name, first 
name and street.The records of the table are sorted in key sequence – name, first name, street 

You can get the table and the primary key definition with the following SQL statement:  
Select * from domain.columns where tablename = ‘ZZTELE’ 

 



 10 

To explain strategies which can be used for subqueries, the examples also refer to the table 
ZZSTADTTEIL with approx. 20000 records and table ZZMASTER.  

The primary key of table ZZSTADTTEIL is defined on column PLZ (zip code). For each zip code there 
is one entry. 

The table is sorted via zip code. 

 

Table ZZMASTER has a multiple key defined on columns YEAR,NAME and VORNAME. The table is 
sorted by the year of the Master graduation, Name and Vorname. 

 



 11 

Indexes enable faster access to the rows of a table. The indexes of a table can be determined using the system 
table INDEXCOLUMNS. 
 

SELECT owner, tablename, indexname, type, columnname, 

       sort, columnno, datatype, len, createdate 

FROM domain.indexcolumns 

WHERE owner = <owner> 

AND schemaname = <schema> 

AND tablename = <table_name> 

ORDER BY owner, tablename, indexname, columnno 

 

 

 

 



 12 

The data of the base tables and the indexes are stored in B*Tree format.  

Every B*Tree for a table has one root page with a size of 8 KB. 

 

 

For more information about B* Tree see Expert Session no. 15 SAP MaxDB No Reorganization 

Principle 

 

 



 13 

First, the SQL parser processes  an SQL statement. It performs a syntactic and semantic analysis. In 
the semantic analysis, tables and their column data are checked. 

The optimizer determines which primary and secondary keys are available for the table and checks 
whether a corresponding key can be used to search for values. 

The number of pages that have to be read in the primary or secondary index is determined by 
generating a start and a stop key. Depending on the number of pages of the table or index, it is decided 
whether it is worthwhile to search using the index. The number of pages of the entire table is located in 
the so called filedirectory 

At the end, the optimizer builds a  strategy with which the SQL statement will be executed. 

 

In the R/3 System environment, SQL statements with bind variables are parsed (:A0, :A1, and so on). 
These bind variables may contain other specific values. All SQL statements that only vary in values are 
also regarded as different statements. The same SQL statement executed with different values can 
therefore also have different run schedules. These commands are structurally the same and are listed 
individually in the Command Monitor with different values. 

 



 14 

An explain plan or access path shows how MaxDB accesses the requested data (index access, table 

scan, key range, key equal, index equal, and so on). An EXPLAIN plan displays the strategy the 

Optimizer selects to run a special SQL statement. These EXPLAINs are used to analyze long running 

SQL statements. An EXPLAIN plan can only be displayed for SELECT statements. Other SQL 

statements must be rewritten to display an explain plan. For example, an UPDATE statement can be 

converted into a SELECT FOR REUSE. 

Example: 

 

UPDATE ZZTELE                                             SELECT * FROM ZZTELE 

SET ADDINFO = 'ledig'                                    WHERE NAME = 'Mueller'  

WHERE NAME = 'Mueller'                                 AND       VORNAME = ' Egon' 

AND       VORNAME = ' Egon‘                           AND       STR = ' Wexstraße' 

AND       STR = ' Wexstraße‘                             FOR REUSE 

 

In the ABAP-based SAP application server, EXPLAIN is available in transactions ST05, DB50 and 

DBACockpit (in the command monitor). The SQL editor of the Database Studio  can send an EXPLAIN 

via context menu (right mouse click) to the database. The output is shown in a separate window. 

 



 15 

EXPLAIN shows: 

  one block for each table from the SELECT-FROM list 

  the order of the strategies reflects the order of execution 

 COPIED / NOT COPIED --> Result set is generated/not generated 

  "Estimated costs" provides an estimation about the number of read/write accesses 

 Applied Query Rewrite rules 

 

 



 16 

Query Rewrite investigates the statement after the syntactical analysis.  

Query Rewrite does a semantical analysis and rebuilds the statement if rules can be applied. Several 

rules can be applied to one query. 

The rearranged statement with the possible execution plans is stored in internal format within Shared 

SQL or the catalog cache, respectively. The optimizer determines the best execution plan for the 

rearranged statement. 

Query Rewrite works rule-based. Statistical data is not taken into account. There is no evaluation of 

data.  

 

 

For more information check FAQ note 1368477 about QueryRewrite. 

 



 17 

You can influence the use of Query Rewrite by setting the parameter EnableQueryRewrite.  

Furthermore you have the possibility to switch single rules on or off. Use an UPDATE statement on 

table QUERYREWRITERULES to set the attribute ACTIVE for the corresponding rule to YES or NO. 

 

UPDATE queryrewriterules 

    SET ACTIVE = 'YES' WHERE RULENAME = 'AddLocalPredicates' 

 

To activate the rule changes to all applications execute: diagnose share parse reject 

 



 18 

EXPLAIN QUERYREWRITE displays the SQL statement after it has been converted by QueryRewrite. 

 

 

SELECT * FROM MONITOR 

WHERE Type = ‚REWRITE‘  



 19 

Here is an example for an explain plan on a single table access. The Optimizer is using the strategy In 

Condition for key on column plz. A temporary result is created – Result is copied. The estimated costs 

have a value of 4. 

 

Select plz from zzstadtteil where plz = ‘12345’ or plz = ‘10000’ 

 

Furthermore the explain tells us the usage of Queryrewrite rules. 

DistinctpullUp does not have any effects on the execution, but is required for other rules to work. 

ConvertOrToIn rewrites OR predicates as IN statements. 

 



 20 

Use the statement EXPLAIN QUERYREWRITE <select> to display the result of the rewrite. In SAP 

MaxDB versions below 7.8, this output is restricted to 2500 characters. This means that truncated 

rewrites may occur. 

 

Note that the result of EXPLAIN QUERYREWRITE is not an SQL statement that can necessarily be 

executed using the Database Studio. You can use the right mouse to expand the complete SQL 

statement. 

 

Further information about QueryRewrite: SAP note: 1368477 FAQ: SAP MaxDB QueryRewrite 

 



 21 

Search conditions are specified in the WHERE part of an SQL statement. The WHERE part is used 

by the optimizer to find the best search strategy to deliver the result.  

 

Note: The order of the column specification in the SELECT list only influences the optimizer search 

strategy for DISTINCT statements.  

 

Without an explicit order by option in the WHERE condition the result is sorted by the primary key 

Name,Vorname,Str. 

Exception: When an Index only strategy is used the result is sorted by the index order. Always ORDER 

BY should be used if a special sort of the result is requested. 

 



 22 

An index contains the data of the secondary key as well as the respective primary key. Using the 

primary key, the data can be found in the base table. For each index, a B* tree is created, which is 

sorted according to the values of the secondary key. 

There is no record ID or anything similar. The unique ID of a record is the primary key. 

If no primary key was specified with the table creation, the database generates the internal field 

SYSKEY of the type CHAR(8) BYTE. This field is filled with unique values. 

Searching via an index is relatively costly.  

On the following slides you will find examples of search strategies. The list of strategies is not 

complete. A complete list of search strategies can be found in the documentation.  

Basic Information -> Background Knowledge -> SQL Optimizer -> Search Strategy -> List of all search 

strategies 

 



 23 

Remember the key definition of table ZZTELE is Name, Vorname, Str 

 

EQUAL CONDITION FOR KEY provides an efficient access path through "direct access" to the base 

table.  

 

The optimizer takes decision for this strategy already at the time of the parsing because, independent 

of the data in the search conditions, no better search strategy is possible. 

 

 



 24 



 25 

If a portion of the start of the primary key is specified in the WHERE condition, the strategy RANGE 

CONDITION FOR KEY will be executed. 

A special case of key range is the table scan. The start key is located at the beginning of the table and 

the stop key at the end of the table. 

The base table will be searched completely (TABLE SCAN). 

An intermediate result set is not generated. 

 

 



 26 

primary key order 

 



 27 

The IN condition can be placed on each field of a primary key. 

Only one IN condition is taken into account.  

The primary key fields that precede the field with the IN condition may only be specified in an EQUAL 

condition. 

An intermediate result set is generated. The result set is sorted according to the primary key. 

As of version 7.4, the optimizer checks whether the RANGE CONDITION FOR KEY is advantageous.  

This happens if the values in the IN condition are close to each other.  Example: 

 

 SELECT * 

  FROM zztele 

  WHERE name IN  ( 'Scheu' , 'Schmidt') 

 

There are additional names in the table that are located between the values 'Scheu' and 'Schmidt'. 

Thus, using this search condition, records are also included that do not belong to the results set. 

However,  the strategy is more favorable since only one start and stop key have to be determined. 

 



 28 

An intermediate result is created for IN CONDITIONs. 

 

No intermediate result is created for RANGE CONDITIONs. 

 

Primary key order 

 

 



 29 

When determining the strategy, additional costs (index_overhead) for accessing the base data via the 

index are taken into account. 

The optimizer also selects the strategy EQUAL CONDITION FOR INDEX, if all fields of a multiple index 

in the WHERE condition are specified with an equal condition.   

An intermediate result set is not generated. 

 



 30 



 31 

If a part of the start of the secondary key is specified in the WHERE condition, the strategy RANGE 

CONDITION FOR INDEX will be executed. 

An intermediate result set is not generated. The result is sorted by the secondary key. 

 

 

The index scan is a special index range with start key at the beginning of the index and stop key and 

the end of the index. 

The index scan is only used for ORDER BY. 

 

During an INDEX SCAN, all entries are read via the index in the order of the secondary key. An 

intermediate result set is not generated.  

As of version 7.4, NULL values are also included in single indexes.  Thus, this strategy can be used on 

all indexes. 

 

 



 32 

The index scan is used if an ORDER BY is added to the SQL statement. 

 



 33 

A secondary key can be taken into account for an IN CONDITION. Only one IN CONDITION is taken 

into account.  

The secondary key fields that precede the field with the IN condition may only be specified in an 

EQUAL CONDITION. 

The result set is sorted according to the secondary key.  

An intermediate result set is generated. 

 



 34 



 35 

The list above shows the properties which are additionally checked by the optimizer and therefore lower the costs 
of an SQL statement. 

 

Examples:  

 

Index only strategy can be used if a SELECT statement only addresses columns that are also contained in an 
index (SELECT list and WHERE condition) 

 

An intermediate result is not necessary to create if the ORDER BY is in key order or in order of an index 

 

If the SQL statement specifies a MIN or MAX operation of a key or index column no intermediate result has to be 
created.  

 

If  the SQL statement specifies a DISTINCT on a key or index column the distinct can be verified directly on the 
key or index. 

 

 

 

 
 



 36 

Remember: in each index the primary key is also part of the data. The primary key is used as separator 

in the index B* tree. 

 

If a SELECT statement only addresses columns that are also contained in an index (SELECT list, 

WHERE clause), then only this index will be accessed for the execution of the command. 

Advantage:  

 In some cases, significantly fewer pages that have to be read 

 Optimal usage of sorting of secondary and primary keys in the index 

 No additional access to the base table 

 

 

 



 37 



 38 

An ORDER BY specification influences the choice of the Optimizer strategy. 

 

The above SQL statement without the ORDER BY specification would be executed via a key range 

directly on the table. But with the ORDER BY specification (by secondary key  - zztele~2)  the strategy 

will change to an INDEX SCAN. 

It is more expensive to read the data via key range and do the sort afterwards then to use an index 

which is already sorted like the ORDER BY specification and access the rows in the specified order in 

the primary table. 

 

 

During the INDEX SCAN, all entries are read via the index in the order of the secondary key. An 

intermediate result set is not generated.  

 



 39 



 40 

The WHERE condition specifies columns of index ZZTELE~2. 

 

The result should be sorted according to the primary key. 

 

Using the additional strategy TEMPORARY INDEX CREATED, the primary keys are sorted in a merge 
list.   The optimum cache usage is guaranteed using access to the base data in the order of the primary 
keys.  
 
Note: During index merge the index is locked therefore it is useful to define a limit. 

  

The maximum size of the merge lists that are generated can be configured using the parameter 
IndexlistsMergeThreshold (OPTIM_MAX_MERGE). When the number of index pages involved is less 
than or equal to IndexlistsMergeThreshold ( Default 500 Pages) the strategy eg. RANGE CONDITION 
FOR INDEX is used.  
As an alternative the strategy which only works on the base table is used. 

 

An intermediate result set is generated (merge list)  but result is not copied. 

 

 

 



 41 



 42 

If possible an index is used to compute the min max value of the specified column in the select list. 

In this example the multiple index on columns str and nr is used to find the highest number of street 

Wexstr. 

Access on table zztele is not necessary to deliver the result. 

 



 43 

DISTINCT eliminates Duplicates. 

 

Internally MaxDB creates a temporary b*tree. The key of this temporary B* tree is defined on  the 
DISTINCT fields of the SELECT list. 

To compute the result each record which is read is copied into this temporary table. When a record with 
the same distinct value will be inserted twice an error avoids the insert. 

 

This expensive procedure is not necessary if an index exists on the columns of the select list or parts of 
the select list. If this optimization can be used only the keys of the secondary index will be checked but 
not the primary key list. 

 

 

In this example there is no access to the primary table necessary; the DISTINCT can be provided with 
the index zztele~1by the secondary key. 



 44 



 45 

With a subquery you can generate the input values for WHERE condition of the query. 

In this example all names of persons who made the master in year 2000 should be listed. 

First the subquery will be executed to get the results as input for the IN condition.  

The strategy which is used for the ‚external‘ SELECT on ZZTELE can only be chosen during execution. 

The values of the IN-clause are not known yet. 

An intermediate result set is generated. The result set contains key values, in this example the first key 

column name, ordered by the primary key of the base table. The Optimizer is doing an IN or RANGE 

STRATEGY FOR KEY COLUMN on table zztele to find those entries which belong to the result with 

PLZ = 10967. 

If a subquery returns values which can be compared with key values, EQUAL CONDITION FOR KEY , 

IN CONDITION FOR KEY or RANGE CONDITION FOR KEY is used on the base table. The result set 

is sorted according to primary key values. 

If a subquery returns values which can be compared with index values, EQUAL CONDITION FOR 

Index , IN CONDITION FOR Index or RANGE CONDITION FOR Index is used.  

 

 



 46 



 47 

The result set is sorted according to the secondary key sequence. If only values from the index are 

queried, the Only Index strategy is used. 

An intermediate result set is generated. 

 



 48 



 49 

Wildcards at the beginning of a column specification  

Using wildcards at the beginning of a column specification cannot be optimized. All 

rows of the table can be part of the result. 

Such queries will be processed with table scans and can result in terrible 

performance. 

 
Solution: Teach your end users not to start the specification with % 

 

WHERE qualification specifies only some columns at the end of an index or the primary key  

As the first key filed (Name) was not specified, MaxDB is not able to use the primary key of ZZTELE 

and performs a table scan which can result in terrible performance. 

Solution:  Teach your end users to specify as many values as possible 

 Create secondary index  

  

Only one IN condition can be optimized, if there are more than one IN qualifications the first is 

optimized. All followed IN conditions will be processed via range. 

 

Do not use functions in where column qualification. This cannot be optimized. Always try to use 

the function in the value specification. 

 

 

 

 

 



 50 



 51 



 52 



 53 


