Managing MaxDB

SPC150

Version 7.6
<table>
<thead>
<tr>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>What Has to be Monitored?</td>
</tr>
<tr>
<td>Standby Database</td>
</tr>
<tr>
<td>Central Monitoring – Transaction DB59</td>
</tr>
<tr>
<td>Database Assistant – Transaction DB50</td>
</tr>
<tr>
<td>Performance Analysis Tools</td>
</tr>
<tr>
<td>Alert Monitor – Transaction RZ20</td>
</tr>
<tr>
<td>Snapshot</td>
</tr>
</tbody>
</table>
Learning Objectives

As a result of this workshop, you will be able to:

- Integrate your MaxDB instances into your monitoring landscape in transaction DB59.
- Use transaction DB50 to monitor your MaxDB instances.
- Use the MaxDB performance analysis tools to determine performance bottlenecks.
- Create a standby database and snapshots.
- Activate the Alert Monitor for your MaxDB instances.
- Schedule backups and other administrative tasks using the DBA Planning Calendar.

DISCLAIMER
This presentation reflects current planning. Contents may be changed without prior notice, and are in no way binding upon SAP.
<table>
<thead>
<tr>
<th>What Has to be Monitored?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standby Database</td>
</tr>
<tr>
<td>Central Monitoring – Transaction DB59</td>
</tr>
<tr>
<td>Database Assistant – Transaction DB50</td>
</tr>
<tr>
<td>Performance Analysis Tools</td>
</tr>
<tr>
<td>Alert Monitor – Transaction RZ20</td>
</tr>
<tr>
<td>Snapshot</td>
</tr>
</tbody>
</table>
Which Instances can be Monitored?

- OLTP System
 - Application Server
 - OLTP Database

- APO System
 - Application Server
 - APO Database
 - liveCache

- KW System
 - Application Server
 - KPRO Database
 - Cache Server
 - Content Server
Anatomy of a MaxDB Instance

MaxDB Instance

MaxDB Kernel

Application

One Pool of DB objects

Data Volume

Data Volume

Data Volume

Log Volume

Log Volume

Log Volume

© SAP 2007 / MaxDB 7.6 Admin Workshop / SPC 150-2006 /Page 7
MaxDB Monitoring

Expensive SQL statements

Task activities

Critical Regions

Caches

I/O

Memory consumption

CPU consumption

Command Analyzer

SQL Interpreter & Optimizer

SQL basis
(B* trees)

I/O buffer cache

Log queue

Log Files

SQL data & Converter
Data Volume(s)

Log Volume(s)
SAP liveCache Technology

SAP Applications

mySAP SCM APO

C++ Application Services

SAP liveCache = MaxDB++

C++ Objects

SQL

MaxDB

© SAP 2007 / MaxDB 7.6 Admin Workshop / SPC 150-2006 /Page 9
Transaction Availability

<table>
<thead>
<tr>
<th>Version</th>
<th>DB50</th>
<th>DB59 / DB50N</th>
<th>LC10</th>
<th>RZ20</th>
<th>DB13C</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6C</td>
<td>GA</td>
<td>Basis SP 44</td>
<td>GA</td>
<td>Basis SP 44</td>
<td>NA</td>
</tr>
<tr>
<td>4.6D</td>
<td>GA</td>
<td>Basis SP 33</td>
<td>GA</td>
<td>Basis SP 33</td>
<td>NA</td>
</tr>
<tr>
<td>6.10</td>
<td>GA</td>
<td>Basis SP 32</td>
<td>GA</td>
<td>Basis SP 32</td>
<td>Basis SP 28</td>
</tr>
<tr>
<td>6.20</td>
<td>GA</td>
<td>Basis SP 21</td>
<td>GA</td>
<td>Basis SP 21</td>
<td>Basis SP 18</td>
</tr>
<tr>
<td>6.40</td>
<td>GA</td>
<td>GA</td>
<td>GA</td>
<td>GA</td>
<td>GA</td>
</tr>
<tr>
<td>7.00</td>
<td>GA</td>
<td>GA</td>
<td>GA</td>
<td>GA</td>
<td>NA – new: DBACOCKPIT</td>
</tr>
</tbody>
</table>

GA: general available; **NA:** not available

DB50 and DB50N **work exclusively with SAP DB/MaxDB instances (as of version 7.3).**

DB59 and DB13C **are database independent.**

LC10 **works exclusively with liveCache instances.** To start/stop/initialize the liveCache this transaction should only be used in the corresponding APO/SCM system - but liveCache instances can be monitored in any SAP system using the mentioned Basis SPs.

RZ20 **is database independent and available as of SAP release 4.6C.** The integration of any SAP DB/MaxDB and liveCache instances is possible as of the mentioned SPs.
The following slides can be used as a reference book – they contain screenshots of the used transactions and additional information.
<table>
<thead>
<tr>
<th>What Has to be Monitored?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standby Database</td>
</tr>
<tr>
<td>Central Monitoring – Transaction DB59</td>
</tr>
<tr>
<td>Database Assistant – Transaction DB50</td>
</tr>
<tr>
<td>Performance Analysis Tools</td>
</tr>
<tr>
<td>Alert Monitor – Transaction RZ20</td>
</tr>
<tr>
<td>Snapshot</td>
</tr>
</tbody>
</table>
Standby Database (w/ Log Shipping)

Initial data backup
Standby Database: Slave Steps

Standby Mode
- Initialize once with complete backup from Master
- Redo logs as they appear

Start Slave to online mode in case of emergency
- If possible, back up last piece of log from master
- Redo all 'open' log backups (there should be none)
- Redo final log piece
- Restart slave to be the new master
Hot Standby – Standby Within Seconds

Master

IP SWITCH

Standby

Cluster

Application

Data

Archive Log

Data

Storage System

© SAP 2007 / MaxDB 7.6 Admin Workshop / SPC 150-2006 /Page 15
MaxDB Software can be installed using the Installation Manager (SDBSETUP). It is possible to install the complete software package or to install just the client software, which is needed on SAP Application Servers. The Custom installation allows to select single software components to be installed.
Standby Database: Installing Database Software II

You can choose if you would like to "install new software or update existing software. It is possible to install a new or upgrade an existing database instance.

You have to choose if you would like to upgrade an existing software installation or if you would like to install the software into a new directory.
If you would like to install the software into a new directory, you have to enter this directory.

Then you'll get an overview of the selected/entered information and you can start the installation.
To install the database instance for the shadow database, use **DBMGUI**.
To open the **Installation Wizard**, choose **Create**...
In the **Installation Wizard**, you can select a configuration template so that you have to edit only a few parameter values.
Next you have to specify a database name.
Standby Database: Installing Database Instance II

After you have selected the software version for your database instance, you have to specify the Database Manager Operator. This is the user used to connect with the DBMGUI to the database instance. Then you have to decide how to initialize the database parameters.
If you would like to get the parameter values from a backup, you have to specify the backup medium for that.

Afterwards you get a list with the parameter values that you can adapt if necessary.
After you checked the configuration of the data and log volumes, you can create further backup media.

Next you have to specify if you would like to create an empty database instance or if you would like to restore the data from an existing backup.
Standby Database: Installing Database Instance V

Before you start the installation double-check the entered information.

When the database instance has been created successfully it is not yet startable. You have to continue with the restore of the backup in the **Recovery Wizard** (just press **Next** in the **Installation Wizard**...).
Select/create a backup medium for the Recovery. Make sure that the backup of your master instance is available at the specified location.

After you restored the complete data backup, choose Back in the Recovery Wizard to be able to restore further backups.
Standby Database: Restoring an Incremental Backup

Depending on the available backups you can now continue with the restore of an incremental backup or with the restore of log backups.

You have to define a new backup medium for the incremental backup.

After you restored the incremental backup, choose Back to be able to restore further log backups.
You have to define a new backup medium for the log backups. Then you have to specify with which log backup the restore should begin. It is always possible to enter the number of the first available log backup file – the database will skip all log backups which are not needed for the restore. However, this check increases the restore time. So specify the actually needed log backup number if you know it.
All available log backup files are restored one after another automatically. When the Database Manager tries to restore a log backup which is not available, an error is reported. Then you have to decide

- if you have restored all needed data,
- if you would like to continue the restore later or
- if you can make the needed log backup file available and continue then with the restore.

Attention: Back can be used to change the media definition or to start the database. Continue tries to restore the backup file again. Cancel aborts the restore and stops the database instance.
When you would like to continue with the restore, you have to start the database instance into ADMIN mode.

Attention: Do not start the database instance in ONLINE mode if you would like to continue the restore. When the database instance was ONLINE, you'll have to start with the initialization and restore of a complete backup again!

To continue the restore you have to specify the last log backup file which was already restored successfully.
Standby Database: Restoring Log Backups IV

When all log backups have been restored successfully and you would like to start the standby instance, you have to choose Back. To start the database select Ignore and press Continue.
The standby instance is in ONLINE mode now. Please remember to load the system tables (Configuration → Upgrade System Tables). Then the database can be used as the production instance and it can be administered and monitored using DBMGUI or transaction DB50.
<table>
<thead>
<tr>
<th>What Has to be Monitored?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standby Database</td>
</tr>
<tr>
<td>Central Monitoring – Transaction DB59</td>
</tr>
<tr>
<td>Database Assistant – Transaction DB50</td>
</tr>
<tr>
<td>Performance Analysis Tools</td>
</tr>
<tr>
<td>Alert Monitor – Transaction RZ20</td>
</tr>
<tr>
<td>Snapshot</td>
</tr>
</tbody>
</table>
Initially transaction DB59 contains only an entry for the system's own MaxDB instance and - in case of an APO/SCM system - the two liveCache connection identifiers LCA and LDA. As of SCM 5.0 the connection identifier LEA is used as well.

To be able to monitor other MaxDB instances within this system, you have to integrate the corresponding database instance - i.e. you have to enter the user information to connect to this database instance.
To be able to connect to the database instance you have to enter:

- The name of the database instance.
- The hostname or IP address of the server on which the database instance runs.
- The DBM operator and his password. This is the user used to connect to the Database Manager GUI or CLI. Default: control with password control.
- The Standard Database User, which for SAP applications is SAPR3 or SAP<SID> as the default.

Make sure that the checkbox for the central authorization is marked, that the connect information is stored in tables DBCON and DBCONUSR of the monitoring system.
Connection Test

To check, if the entered connect information works, mark the entry of the concerning database instance and choose Connection Test.

You'll get a list of all application servers. Select one and choose Connection Test to check one after another if the connection works from all application servers.
The connection test first checks the DBMCLI connection, then the command and session mode of DBMRFIC and afterwards the SQL connection. If everything is OK, a green check mark appears for this application server, otherwise a red cross is shown. In this case you have to check the log file.
One possible problem is that the X-Server is not running on the database server. The X-Server is the TCP/IP listener of MaxDB which handles remote connections to the database instance.
Wrong DBM Operator Password

The connection test also fails if the DBM operator user and/or password has not been entered correctly.
Wrong Standard Database User Password

If the DBM Operator and his password have been entered correctly, the DBMCLI and DBMRFC connection work.

Then the native SQL test may fail because the standard database user has not been entered correctly.

In this case you can find more information in the corresponding dev_w# file.

Error -4008 (Unknown user name/password combination) indicates that the user data for the standard database user is not correct.
Remote Monitoring

Transaction DB59: Central entry point to monitor MaxDB & liveCache instances

Monitoring of remote instances is possible. Even stand-alone databases like small test databases can be monitored in the SAP system.
What Has to be Monitored?

- Standby Database
- Central Monitoring – Transaction DB59
- **Database Assistant – Transaction DB50**
- Performance Analysis Tools
- Alert Monitor – Transaction RZ20
- Snapshot
After you entered the connect information for your database instance you can start the database assistant. Select the newly created entry in the list of databases and choose Assistant.
This is the Properties section of transaction DB50N.

Transaction DB50 can only connect to the system's database instance.

Transaction DB50N is started from transaction DB59 as it is able to connect to different database instances.

DB50 and DB50N are nearly identical. In this presentation always DB50N is used, although the slides say DB50.

In the properties section you can find some general information like the database name, the database server, the database version and the operational state of the database instance.
Operational States

There are three possible operational states of MaxDB and liveCache:

OFFLINE:
MaxDB kernel processes and caches do not exist. No user can use the database.

ADMIN:
The MaxDB kernel is active (processes are started, caches are initialized). Users cannot connect to the database. Only the DBM operator can connect and perform administrative tasks.

ONLINE:
The MaxDB kernel is active and ready to work. Users can connect to the database.
MaxDB And liveCache Directory Structure

The IndepPrograms directory contains programs and libraries shared by the MaxDB instances and MaxDB applications. These programs are downwards compatible.

The IndepData directory contains the configuration data and rundirectories of MaxDB instances.

The location of these directories is specified during the first installation of MaxDB software. They exist only once on the server.

The InstallationPath contains the server software that depends on the database version (e.g. kernel). Several dependent directories can exist alongside each other.

The rundirectory contains the status files of a MaxDB instance.
MaxDB Status And Log files

Most important log files:

KNLDIAG - contains status and error messages of the database kernel

KNLDIAGERR - contains all error messages since database installation

UTLPRT - contains administrative commands sent to the database kernel (e.g. SHUTDOWN, BACKUP, CHECK DATA) including their return code(s)

BACKHIST - contains all backup and recovery actions

DBMPRT - contains all (administrative) commands sent to the dbmserver

<table>
<thead>
<tr>
<th>File ID</th>
<th>File Name</th>
<th>Size</th>
<th>Date</th>
<th>Time</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>KNLDIAG</td>
<td>knldiag</td>
<td>819.200</td>
<td>25.06.2004</td>
<td>11:54:16</td>
<td>Database Messages</td>
</tr>
<tr>
<td>KNLDIAGERR</td>
<td>knldiag.err</td>
<td>70.359</td>
<td>22.06.2004</td>
<td>14:20:57</td>
<td>Database Errors</td>
</tr>
<tr>
<td>KNLDIAGOLD</td>
<td>knldiag.old</td>
<td>801.200</td>
<td>22.06.2004</td>
<td>14:20:43</td>
<td>Database Messages</td>
</tr>
<tr>
<td>KNLTRC</td>
<td>knltrace</td>
<td>2.080.763</td>
<td>25.06.2004</td>
<td>11:54:42</td>
<td>Database Trace</td>
</tr>
<tr>
<td>UTLPRT</td>
<td>dtm.dll</td>
<td>102.400</td>
<td>22.06.2004</td>
<td>14:20:39</td>
<td>Utility Statements</td>
</tr>
<tr>
<td>BACKHIST</td>
<td>dbm.knl</td>
<td>42.847</td>
<td>22.06.2004</td>
<td>15:07:17</td>
<td>Backup History</td>
</tr>
<tr>
<td>BACKMDM</td>
<td>dbm.mcf</td>
<td>56.210</td>
<td>22.06.2004</td>
<td>15:07:11</td>
<td>Backup Media History</td>
</tr>
<tr>
<td>DBMPRT</td>
<td>dbm.pr</td>
<td>134.693</td>
<td>25.06.2004</td>
<td>11:50:40</td>
<td>Database Manager</td>
</tr>
<tr>
<td>DBMMDF</td>
<td>dbm.mmm</td>
<td>0.21</td>
<td>03.02.2004</td>
<td>14:45:56</td>
<td>Database Manager</td>
</tr>
<tr>
<td>DBMPAHF</td>
<td>MYDB.pah</td>
<td>213.012</td>
<td>22.06.2004</td>
<td>14:20:44</td>
<td>Database Parameter</td>
</tr>
<tr>
<td>LCCINITCMD</td>
<td>lcinit.bat</td>
<td>16.121</td>
<td>24.05.2004</td>
<td>17:45:15</td>
<td>LiveCache Initialize</td>
</tr>
<tr>
<td>INSTPRT</td>
<td>dbm.ins</td>
<td>810.745</td>
<td>22.06.2004</td>
<td>14:20:35</td>
<td>Installation Protocol</td>
</tr>
<tr>
<td>KNLTRCPRT</td>
<td>MYDB.ptr</td>
<td>225</td>
<td>20.04.2004</td>
<td>09:24:01</td>
<td>Kernel Trace Prof</td>
</tr>
<tr>
<td>DIAGDIR</td>
<td>File</td>
<td>0</td>
<td>25.06.2004</td>
<td>11:54:10</td>
<td>Diagnose History</td>
</tr>
<tr>
<td>ANALYZER</td>
<td>analyzer</td>
<td>0</td>
<td>24.06.2004</td>
<td>00:00:10</td>
<td>DB Analyzer File</td>
</tr>
<tr>
<td>EVTDISPRT</td>
<td>dtm.datisp.ptr</td>
<td>213.441</td>
<td>02.07.2004</td>
<td>16:54:35</td>
<td>Event Dispatcher</td>
</tr>
<tr>
<td>EXTDBPRT</td>
<td>dtm.handler_ext.</td>
<td>224</td>
<td>24.03.2004</td>
<td>18:30:59</td>
<td>Event Handler Ext</td>
</tr>
</tbody>
</table>
Database Activity

The Activity Overview gives an overview of the database activity since it was started. E.g. you can see:

- the number of SQL statements executed,
- the number of lock collisions,
- the number of lock escalations
Parameter Settings

You can check the current parameter settings and the change history of each parameter. The most important parameters are listed in the General Parameters section. All other parameters should only be changed if requested by the MaxDB support.

Parameters can be changed using the Database Manager GUI. Whenever a parameter has been changed, the database has to be restarted that the new parameter settings take effect (see note #814704 for online changeable parameters).
Parameter Change History

It is also possible to get an overview of the parameter changes by date. You can see

- which parameters have been changed on which day
- the old as well as the new parameter values.
Volume Configuration

The **Volumes** section shows all configured log and data volumes including their locations and sizes.

You can also see, how many data volumes could be added while the database is ONLINE.

This is limited by the database parameter MAXDATAVOLUMES.

New volumes can be added using the Database Manager GUI.
Backup Media

The Backup Media section provides an overview of all defined backup media. It is also possible to define new backup media.

MaxDB supports parallel backups to several files/tapes/pipes. Therefore a media group has to be defined which consists of several single backup media. The following external backup tools can be used to create backups:

- Tivoli Storage Manager
- Networker
- Tools which support the Interface BackInt for Oracle

The backup media can also be defined with Database Manager GUI. Backups are created using this tool as well or with transaction DB13/DB13C or the DBACOCKPIT.
The **Task Manager** shows the status of all currently active database tasks. In a running system, possible states are:

- **Running** – task is in kernel code of MaxDB and uses CPU
- **Runnable, Vsleep** – task is in kernel code of MaxDB and waiting for a free slot in its thread (UKT)
- **LogIOWait** – task waits for completion of its log request by the archive log writer
- **IOWait (R) or IOWait (W)** – task waits for data I/O completion (read or write)
- **Vbegexcl or Vsuspend** – task waits to acquire an internal lock in MaxDB
- **Vwait** – task waits for an SQL lock held by another application process to be released (locks are released after a COMMIT or ROLLBACK)
Memory Areas: Caches

The **Caches** area shows the configured sizes of the different memory areas and the hit rates of these caches. The Data Cache hit rate should always be >= 98%.
The data area can consist of several data volumes. The *Total Size* shows the sum of the sizes of all data volumes. You can see the filling level of the data area as well as the proportion of temporary data. The data is automatically distributed to all volumes equally. You don't have to define table spaces. Empty data pages are reused by the database automatically. No reorganization is necessary.
Memory Areas: Log Area

For test or demo systems it is possible to activate an overwrite mode for the log volumes - then you don't have to take log backups before the information on the log volume can be overwritten.

It is also possible to switch off the writing of log information. Both of these possibilities are not recommended for productive systems as you won't be able to restore the database to the latest state.

The log area can consist of several log volumes - however they are used as one single log area.

The *Log Segment Size* determines how large the log backups are created by the autosave log.

Whenever *Log Segment Size* log pages are written, they are copied to the log backup file and the pages in the log volume can be overwritten.
Database Messages

File knldiag has a fixed size. It is initialized when the database is started. The last version of this file is then copied to knldiag.old.

Knldiag consists of two parts: the first part contains information about the database start and is not overwritten. In the second part information is logged during the runtime of the database. This part is overwritten cyclically. The current write position is marked with '--- current write position ---'

In case of problems with the database you should always check file knldiag for error messages.
Database Error Messages

File knldiag.err contains message '--- Starting...' whenever the database has been started from state OFFLINE to state ADMIN.
All other messages are error messages - e.g. information about a crash, including a back trace which can be used by the developers to find the cause of the crash.
Database Terminations

If the database is not stopped correctly the most important log files are saved in the DIAGHISTORY folder during the next start of the database instance. This ensures that they are not overwritten and can still be analyzed to determine the cause of the crash.

These files can be seen in the Terminations section. As a default only two sets of log files are held in the diaghistory.
File dbm.prt contains statements sent to the dbmserver. Whenever an administrative command has been executed using Database Manager GUI or CLI this is logged in this file, including the error code (if an error occurred). E.g. you can see, when a start or stop command has been executed.
Remote SQL Server Messages

File xserver.prt has a fixed size. The first part of this file contains startup information of the X-Server, including an environment dump. There you can see the relevant environment variable settings of the user who started the X-Server. This part is not overwritten.

The second part contains runtime information like e.g. connect errors.
The DBA History contains information about administrative tasks. E.g. you can see information about executed backup and recovery actions or consistency checks. You can display a detailed log file for each of these actions.
DBA History: Backup/Restore Log File

The log file of a backup contains the backup command and its return code and detailed information like:

- the creation date of the backup
- the number of pages transferred
- the backup label
- the location of the backup file
DBA History: Backup/Restore (Kernel)

This is the backup history from the point of view of the database kernel. Each log backup action might create several log backup files - each of the size of one log segment. The HISTLOST entries are created whenever the log volumes are initialized - e.g. during the installation. Then you have to create a complete backup again to start a new backup history.
Kernel Administration Log File

File dbm.utl contains information about all administrative tasks sent to the database kernel.

This log file is written by the database kernel itself.

It contains information about:
- backups,
- consistency checks and
- starts/stops of the database instance including the return codes of these commands.
Database Manager (CLI)

Using the Database Manager CLI dbmserver commands can be executed. Some of the most important commands are:

- **db_state** – determines the database state
- **dbm_version** – determines the version of the dbmserver
- **db_offline** – stops the database instance – should not be executed for the systems own database instance!
- **db_online** - starts the database instance
The DBA Planning Calendar allows to schedule important database tasks like backups or consistency checks (like transaction DB13/DB13C in earlier SAP releases). Double-click a line in the calendar view or in the Action Pad to schedule a task.
Scheduling Tasks

For some tasks parameters are necessary – e.g. the backup medium for a backup. These parameters can be specified in this window. Furthermore you can specify if the task should be executed immediately or if it should be executed at a specific date/time and if it should be executed in a certain interval (daily, weekly, every few hours, …)
If you perform a double-click on a finished action you can have a look at the log files of this task.
What Has to be Monitored?

Standby Database

Central Monitoring – Transaction DB59

Database Assistant – Transaction DB50

Performance Analysis Tools

Alert Monitor – Transaction RZ20

Snapshot
Performance Analysis

If you have performance problems you can start the MaxDB performance analysis tools:
- Database Analyzer
- Command Monitor
- Resource Monitor

In case you have problems with special transactions you can run these afterwards and analyze the collected data concerning these transactions.

In case of general performance problems the tools should run for a while and you should check the output of these tools regularly for any problems.
Starting the Database Analyzer

The database analyzer is a rule-based expert system for performance analysis. It collects statistical and monitoring data as well as system messages. It detects and reports e.g.

- Low cache hit ratio
- High I/O load
- Low hit ratio of DML commands (SELECT, UPDATE, DELETE)

For a short time analysis the interval should be set to 60 - 120 seconds. For long time monitoring it should be set to 900 seconds.
Database Analyzer uses a set of sophisticated rules to classify the current state of MaxDB by analyzing several MaxDB parameters. These rules and the source of collected data are delivered in file dbanalyzer.cfg. In the status window you can see which configuration file is used and where the log files are stored.

The log files of each day are stored in a separate directory where you can analyze them later on.
The Database Analyzer rates the information and bottlenecks:

I: General information, such as the number of executed commands

W1 to W3: Bottleneck warnings with low, medium, and high priority

An example for a warning might be

W3 Selects and fetches selectivity 0.02% -> rows read 66928, 12 rows qualified

That means that the access strategies to data in SQL tables is bad because a high number of table rows have to be read internally to find a small number of rows that meet the qualification in the WHERE clause.
Starting The Command Monitor

To identify long running statements or statements with a bad selectivity, the command monitor can be used. It collects specific data about SQL statements whose resource consumption violates configurable thresholds like runtime, page accesses or selectivity.

This monitor is mainly used to catch statements with high individual runtime.

The command monitor also collects the exact user input data used during statement execution. This is essential to create the correct execution plan used for statement execution.

The command monitor keeps only a specified number of statements - old statements are overwritten when this number is reached.
In the command monitor you can see e.g.
- the runtime of the statement,
- the number of rows read and rows qualified and
- the number of disk I/O during statement execution.

To view the complete statement perform a double click on the corresponding entry.
The execution plan of a SQL statement can be displayed by pressing *Display Execution Plan for SQL Statement*. In this example the optimizer uses a table scan to get the requested results. A lot of rows have to be read to find the few matching rows. That's the explanation for the entries in the database analyzer log file and in the command monitor.
The resource monitor collects data of all executed statements independent of the single execution time.

You can restrict the number of displayed rows specifying lower limits e.g. for the runtime or the number of statement executions.
Starting the Resource Monitor

The resource monitor aggregates the resource consumption over all executions of a statement.

It helps to identify SQL statements with cheap individual execution (e.g. through primary key access), which are executed very often and therefore cause a high aggregated runtime and workload.

The optimization of these statements promises the highest overall effect.
Resource Monitor Output

You can see e.g.

- the number of executions,
- the overall runtime and
- the number of page accesses.

To view the statement perform a double click on the corresponding entry. Often these statements cannot be optimized with database methods because they are already executed in the most efficient way. Then the application developer has to check if the statement has to be executed so often.
To determine the best optimizer strategy for an SQL statement you have to analyze all tables involved.

You have to check

- the table definition (especially the primary key definition)
- the existing indexes and
- the optimizer statistics.

To decrease the runtime of a statement it might be necessary to update the optimizer statistics or to create a new index.
Tables/Views: Properties

In the Properties section you can see when the table has been created and altered and when the optimizer statistics have been updated the last time.

It is also possible to check the table consistency and to change the default sample value for the creation of the optimizer statistics.

For large tables the sample value should be set to 10% - for smaller tables a sample value of 20000 rows is sufficient (note #808060).
Primary Key columns have the *Type KEY*, in column *Key Position* you can see if this is the first, second, ... key column.

Furthermore you can see the data type and length of a column.
All Indexes defined for a table are listed in the *Indexes* section. You can see

- of which columns the index consists,
- if it has already been used,
- if the index is activated,
- if the index is corrupted.

It is also possible to activate and deactivate indexes.

If an index is deactivated it is still maintained during insert, update or delete operations but it cannot be used to access the data.

Corrupted indexes can be recreated.
If an index is corrupted it cannot be used to access the data.

Mark the corrupted index and choose *Restore Index* to recreate it.

Attention: During the index rebuild the corresponding table is locked for write transactions. Depending on the size of the table the rebuild might take a long time.
Showing the Execution Plan

After the index has been recreated it is used by the optimizer when the statement found in the command monitor is executed again.

Now the execution of this statement is much faster.
Tables/Views: Optimizer Statistics

To determine the best access strategy for a JOIN the optimizer needs statistical data. If this data is not updated regularly the optimizer might not choose the best strategy.

UPDATE STATISTICS determines information about the size and the value distribution of tables and indexes. These values are not counted but estimated on the basis of sample rows.
Chapter

<table>
<thead>
<tr>
<th>What Has to be Monitored?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standby Database</td>
</tr>
<tr>
<td>Central Monitoring – Transaction DB59</td>
</tr>
<tr>
<td>Database Assistant – Transaction DB50</td>
</tr>
<tr>
<td>Performance Analysis Tools</td>
</tr>
<tr>
<td>Alert Monitor – Transaction RZ20</td>
</tr>
<tr>
<td>Snapshot</td>
</tr>
</tbody>
</table>
The alert monitor collects e.g. data concerning the filling level of the log and the data area, the cache hit ratio and the creation of backups. If you perform a double-click on a node in the tree, you get detailed information about this node - e.g. the backup history. In this example no data backup exists.
Creating a Complete Backup

To create a data backup use the Database Manager GUI and choose *Backup → Database*. The Backup Wizard will guide you through the backup process – including the creation of a backup medium, if there is none.
Creating a Complete Backup II

It is also possible to use the DBA Planning Calendar to create the backup. With this transaction you can schedule different actions or execute them immediately.
After you have solved the problem, you can either wait until the data collector runs the next time or start the data collector manually. To figure out which data collector is responsible for this node, place the cursor on this node and press F1 then choose Long Text.
Manual Start of Data Collection for Alert Monitor

To be able to start the data collector, you have to activate the maintenance function in transaction RZ20. Choose **CCMS monitor sets → SAP CCMS Technical Expert Monitors → All Monitoring Contexts**. Then choose **Extras → Activate maintenance function**.
Start Data Collection Method

Then you can select the data collector (make sure the checkbox is marked) and choose

Edit → Nodes (MTE) → Start methods → Start data collection method.

If you refresh the display in RZ20 then, the backup node will be green.
Changing Threshold Values

Sometimes the default threshold values for the nodes do not fit your requirements. In this example a very small test database is monitored. The log volume is nearly empty but the alert is red. Mark the concerning node and choose Properties to adapt the threshold values.
Green Alerts

After changing the threshold values the node concerning the Free Log Space is green.
What Has to be Monitored?

- **Standby Database**
- **Central Monitoring – Transaction DB59**
- **Database Assistant – Transaction DB50**
- **Performance Analysis Tools**
- **Alert Monitor – Transaction RZ20**
Snapshot

Freezing a database image

- Create Snapshot (ADMIN)
- Revert to Snapshot (ADMIN)
- Drop Snapshot (ADMIN)

Ideas of use:

- Very fast point in time resetting (e.g. during upgrades)
- Restoring training-systems to a defined status
Master – Slave Support w/ Snapshots

Master

Data 01.01.2006

Complete

Data 07.01.2006:

Create Snapshot

Incremental

Restore Snapshot

Data 14.01.2006

Incremental

Slave

Data

Complete

Create Snapshot:

Incremental

Restore Snapshot

Data 07.01.2006

Incremental

Data 14.01.2006

Incremental
Snapshots: Database After Setup

![Database Manager Interface](image)

- **Name**: MAXSNAP
- **State**: Online
- **Data**: 2%
- **Auto Overwrite**: 20%
- **Sessions**: 100%
- **Auto Log**: Off

General Information
- **Name**: MAXSNAP
- **Version**: 7.5.00.07
- **Operating System**: Windows XP (WIN32)
- **Run Directory**: c:\documents and settings\all users\application data\db\data\work\MAXSNAP
- **Auto Log**: Off
- **Command Monitor**: Off
- **Resource Monitor**: Off
- **Database Trace**: Off
- **Database Analyzer**: Off
Taking a Snapshot

If you would like to create a snapshot, the database has to be in ADMIN mode. DBMGUI allows to create the snapshot with menu Backup > Create Snapshot.
Some Data Has Been Loaded

Then you can use your database instance normally – e.g. you can load some data.
Checking Data in SQL Studio
Admin Mode: Revert to Snapshot

If you would like to revert to the snapshot, choose menu Recovery → Revert to Snapshot. This can be done in ADMIN mode, only.
After you restored the snapshot, all data loaded after the creation of the snapshot is gone, data which was deleted, is available again.
Summary

Transactions DB59, DB50 and RZ20 help you to monitor and administer all MaxDB database instances in your system landscape.

- Transaction DB59 is the central entry point where the instances can be integrated into the monitoring system. Using this transaction you can easily switch to the Database Assistant for each of your database instances.
- Transaction DB50 is the Database Assistant which allows to monitor your MaxDB instance. Performance problems can be analyzed and solved using this transaction.
- The DBA Planning Calendar enables you to schedule important database tasks like backups or consistency checks.
- In transaction RZ20 a special branch for the MaxDB instances can be created, so that critical situations are reported using the SAP Alert concept.

Database Manager (GUI) provides all necessary functions to administer existing database instances and to create new instances – e.g. standby databases.
Thank you!